A Rationale for Postsurgical Laser Use to Effectively Treat Dental Implants Affected by Peri-implantitis: Two Case Reports

Peri-implantitis is a biologic complication that can affect the survival of a dental implant. Most surgical and nonsurgical treatments have been relatively ineffective even when using targeted antimicrobial approaches. A growing number of reports are documenting the presence of titanium granules and/or cement in the soft tissues surrounding peri-implantitis–affected dental implants. Two case reports are presented demonstrating how the Nd:YAG or a carbon dioxide (CO2) laser used following regenerative surgeries changed failures into successes as measured by radiographic bone fill and improved clinical parameters. These cases suggest that successful peri-implantitis treatment may need to incorporate decontamination of the soft tissues in addition to the implant’s surface. Further studies are warranted to determine if each of these lasers would be successful over a larger patient cohort. Int J Periodontics Restorative Dent 2020;40:561–568. doi: 10.11607/prd.4428

The use of dental implants has been a reliable treatment option for replacing missing or soon-to-be-missing teeth. While dental implants have demonstrated great reliability, their long-term use has uncovered problems that were not necessarily apparent or reported in the early years when they were first implemented.1–3 Biologic problems represent one particular category of dental implant complications that have recently received a great deal of attention.4,5

Peri-implantitis has been commonly described in the literature as a pathologic condition occurring in tissues around dental implants, characterized by inflammation in the peri-implant mucosa and progressive loss of supporting bone.5,6 The recent World Workshop held by the American Academy of Periodontology (AAP) and the European Federation of Periodontists (EFP) on the classifications of periodontal and peri-implant diseases identified strong evidence that there is an increased risk of developing peri-implantitis in patients who have a history of chronic periodontitis, poor plaque control skills, and no regular maintenance care after implant therapy.5,6 The data analyzed by this conference regarding both smoking and diabetes as potential risk factors/indicators for peri-implantitis was found to be inconclusive.5 Moreover,
the literature evidence that the peri-
implantitis group reviewed pointed
to there being some limited evi-
dence linking peri-implantitis to oth-
er factors, such as postrestorative
presence of submucosal cement,
lack of peri-implant keratinized mu-
cosa, and positioning of implants
that make it difficult to perform oral
hygiene and maintenance.

When reviewing the literature
regarding treatment approaches
for peri-implantitis, most systematic
reviews affirm that there is no best
approach for effective treatment. Nonsurgical approaches have been
consistently ineffective and surgery has been disappointing in its
ability to arrest the disease, even
when targeted antimicrobial ther-
apy has been employed. It has
been speculated that the reason
targeted antimicrobial therapy may
be ineffective is that no one agent
kills all the bacteria and that a dual
antibiotic approach, which has been
absent in many of the historic
approaches, may be necessary.

There have been a number of
reports in the literature regarding
foreign materials being found in
biopsy material obtained around
peri-implantitis–affected implants. These materials have included tita-
nium particles and/or residual cemen.
These two foreign materials may not have been eliminated by
the locally or systemically adminis-
tered antimicrobials or even by sur-
gical approaches that concentrate
on mechanical/chemotherapeutic
implant-surface decontamination.
One possible method for ablating
these particles is the use of a laser,
which will affect the surrounding
soft tissues. This article presents
two case reports demonstrating
how the use of either the Nd:YAG or
CO2 laser in the first several months
following surgery changed an in-
complete treatment into very suc-
cessful outcomes.

Case 1

A 63-year-old Caucasian man was
referred for evaluation and treat-
ment of several dental implants that
were failing due to peri-implantitis.
The lesion had reached an advanced
level of disease as evidenced by
greater than 50% bone loss. The
gravest concern was the failing den-
tal implant at the mandibular left
first-molar site (Fig 1a). His medical
history included hypertension for
which enalapril was being taken.
The implant under examination had
probing depths that reached 9 to
10 mm circumferentially with puru-
ence and bleeding elicited upon
both probing and pressure to the
tissues. The adjacent teeth and a
dental implant at the mandibular left
first-molar site were failing due to peri-
implantitis. Due to the severe bone loss
and probing that suggested the
lesion was contained, it was deter-
mined that a surgical regenerative
approach would be performed.

The protocol for this treatment
has been previously described.
In summary, informed consent
was first obtained. Local anesthesia
was administered using Septocaine
(Septodont) 4% with 1:100,000 epi-
nephrine. Full-thickness flaps were
elevated with periosteal release to
allow for adequate flap mobilization
for visualization, implant surface ac-
cess, and coronal advancement at
time of closure. Surface debride-
ment was performed using air-
borne-particle abrasion with glycine
(Fig 1b) followed by citric acid (50%
solution) applied for approximately
1 minute with cotton pellets. Each
step was separated by a vigorous
rinse of sterile water. Recombinant
human platelet-derived growth
factor-BB (rhPDGF-BB) (Gem 21,
Lynch Biologics) was then placed on
the decontaminated surface of the
implant, and the circumferential le-
son received a composite graft of
freeze-dried bone/demineralized
freeze-dried bone allografts in a
70:30 ratio (Creos Allo.Gain, Nobel
Biocare) (Fig 1c) hydrated by the rh-
PDGF-BB and layered/contained by
a collagen membrane (Creos Xeno-
protect, Nobel Biocare) (Fig 1d). The
graft was hydrated with rhPDGF-BB
together with enamel matrix deriva-
vit (Emdogain, Straumann). The
site was sutured with 5-0 polytetra-
fluoroethylene sutures (Omnia)
(Fig 1e). Postoperative pain man-
agement was achieved with 600 mg
ibuprofen, and infection control in-
cluded systemic use of amoxicillin
for 7 days (875 mg twice daily) and
an anti-inflammatory triple botani-
ral rinse (PeriActive, Izun Oral Care).
The patient was seen every 2 weeks
for follow-up.

At 5 months, the outcome of
treatment appeared to be subop-
timal, as evidenced by highly in-
famed soft tissues (Fig 1f) and poor
osseous profile/bone fill (Fig 1g). The
decision was made to treat the area
Fig 1 Case 1. (a) Pretreatment radiograph suggests severe bone loss on the anterior implant in the mandibular left first-molar site. (b) The lesion seen is a circumferential moat around this anterior implant at the first molar. There is some residual glycine powder on the dental implant following airborne-particle abrasion. (c) Following implant surface decontamination, the lesion is filled with an allograft of mineralized:demineralized bone in a 70:30 ratio. The graft has been hydrated with rhPDGF-BB. (d) A collagen membrane has been adapted over the composite graft in an effort to contain it. (e) The flaps have been advanced to completely cover the graft membranes and were secured with 5-0 polytetrafluoroethylene sutures using an interrupted technique. (f) The clinical view at 5 months demonstrates that the soft tissues are still fairly inflamed. When lightly cleaning and probing the area, there is bleeding with this provocation. (g) The 5-month postoperative radiograph suggests some improvement with incomplete healing. (h) The site has been treated using an Nd:YAG laser with two passes. Intervening these two passes, the site received curettage of the soft tissue along with postoperative use of amoxicillin. (i) Clinical view 1 year after the initial treatment. The soft tissues surrounding the dental implant are greatly improved. Probing depths were consistent with good health and there was an absence of bleeding. (j) The radiograph taken at the 1-year follow-up suggests a substantial improvement in the hard tissues surrounding the dental implant, which starkly contrasts both the pretreatment and 5-month radiographs.
with the Nd:YAG laser (PerioLase, Millennium Dental Technologies). A first pass was performed with a setting of 3.6 watts, 100 milliseconds, and 20 Hz delivering 65 J, followed by curettage of the tissue and then a second pass with a setting of 3.6 watts, 650 milliseconds, and 20 Hz for 77 J (Fig 1h). Amoxicillin (875 mg, twice daily) was again given for 7 days as a postoperative antibiotic. The patient was seen at 1 week, 4 weeks, and 3 months postoperative and every 3 months thereafter. Probing depth measurements were performed at 6 months and were reduced to 4 mm with an absence of bleeding. Two years after the initial surgery, there was radiographic evidence of a favorable gain in bone, and the soft tissue parameters were consistent with good health (Figs 1i and 1j).

Case 2

A 67-year-old woman, with a non-contributory medical history taking a multivitamin with no stated food or drug allergies, was referred for evaluation and treatment of a cantilevered implant partial denture in the mandibular left quadrant that was failing due to peri-implantitis. She had hydroxyapatite-coated dental implants (Calcitek, Zimmer Biomet) placed over 20 years ago at the mandibular left first- and second-molar sites that were splinted with a cantilever distal pontic at the third-molar site (Fig 2a). These implants were affected by severe peri-implantitis with probing depths greater than 7 mm, over 50% bone loss (Figs 2b and 2c), and keratinized tissue measuring less than 1 mm in width and thickness. In addition, she had a rough-surface implant (Osseotite, Zimmer Biomet) placed at the second-premolar site approximately 10 years earlier with evidence of early to moderate peri-implantitis. The dentition of this
Case 2. (d) Regenerative graft material (anorganic bovine bone collagen hydrated with rhPDGF-BB) was placed around the implants at the time of surgery. (e) A xenograft collagen soft tissue graft was placed over the bone-replacement graft material mixed with enamel matrix derivative. (f) Soft tissue healing at 3 months after the initial surgery appears poor as ongoing suppuration is present. (g) Surgical reentry procedure allowing for soft tissue laser ablation of the flap using a 9.3-micron CO₂ laser. (h) Favorable soft tissue healing is seen at 3 years after the initial procedure, demonstrated by both an increase in the gingival tissue and the lack of bleeding on probing. (i) The radiograph taken at the 3-year follow-up shows bone fill of the hard tissue defect, suggesting improved health of the implants.
patient was periodontally stable, with probing depths ranging from 2 to 4 mm. She was seen at 3-month intervals for maintenance visits. Due to the severe bone loss and lack of keratinized tissue, it was determined that a surgical hard and soft tissue regenerative approach would be performed.

The protocol for treatment has been previously described.19,20 In summary, informed consent was first obtained. Local anesthesia was administered using Septocaine (Septodont) 4% with 1:100,000 epinephrine. Full-thickness flaps were elevated with periosteal release to allow for adequate flap mobilization ensuring visualization, implant surface access, and coronal advancement at the time of closure. Implant-surface debridement was performed using airborne-particle abrasion with glycine followed by mechanical debridement with a titanium brush (RotoBrush, Salvin Dental) followed by citric acid (60% solution) applied for approximately 1 minute with cotton pellets. Each step was separated by a vigorous rinse with sterile water. rhPDGF-BB (Gem 21) was then applied to the decontaminated surface of the implant and layered with anorganic bovine bone with 10% collagen (Bio-Oss, Geistlich) (Fig 2d). Because of the limited keratinized tissue, a bovine collagen soft tissue matrix (Mucograft, Geistlich) (Fig 2e) was placed over the bone replacement graft. The graft was hydrated with rhPDGF-BB along with enamel matrix derivative (Emdogain). The tissue was coronally advanced and secured using a sling suture technique with 5-0 polygalactin sutures (Vicryl, Ethicon). Postoperative pain was managed with 800 mg ibuprofen, and infection control included systemic use of amoxicillin (500 mg, tid) for 10 days and a homeopathic antibacterial/anti-inflammatory rinse (VEGA Oral Rinse, StellaLife). The patient was seen every 2 weeks for follow-up.

At 3 months, healing appeared suboptimal as the soft tissues showed high inflammation with suppuration (Fig 2f). The decision was made to treat the area with the 9.3-micron-CO\textsubscript{2} Solea laser (Convergent Dental). A mucoperiosoteal full-thickness flap was reflected, and both the implant surface and the soft tissue flap were ablated using a setting of 1.0 watts, lower power mode, 1.2-mm spot site, 30% cutting speed, 100% mist (13 mL/minute), with a contra-angle handpiece (Fig 2g). Amoxicillin (500 mg, tid) was again given for 10 days as a postoperative antibiotic. The patient was seen at 1 week, 3 weeks, and 3 months postoperative and every 3 months thereafter. Probing-depth measurements were performed at 1 year and were reduced to 3 mm with an absence of bleeding. Three years after the initial surgery, there was a favorable gain in both hard and soft tissues, indicative of good health (Figs 2h and 2i).

Discussion

Dental implants differ from teeth in their ability to handle inflammation, which stems from their differences in the interfacial soft tissue interfaces. Teeth have both connective tissue fibers inserting into their root surface cementum in addition to a hemidesmosomal adherence of the sulcular epithelium. Implants, on the other hand, have only a hemidesmosomal adhesion of the supracrestal epithelium to act as a barrier to the oral/sulcular environment, since the supracrestal connective tissue fibers run parallel to the surface of the implant. Thus, anything that might impact oral sulcular epithelial homeostasis would be of great concern.

The most recent World Workshop held by the AAP and EFP reaffirmed plaque as the primary etiology to peri-implantitis.6 At the time of the conference, they also felt that the available evidence did not allow an evaluation of the role that titanium or metal particles play in the pathogenesis of peri-implant diseases. Hence, the concept of implant tribocorrosion as an inflammatory initiator is a departure from the long-held bacterial pathogenesis model.14 This newer perspective may help explain why many of the treatment efforts have failed, and it may well be the reason clinicians have had to continually explore other treatment methods to better manage this challenging problem. One possible solution has been the additive use of a dental laser to the regenerative treatment for peri-implantitis. Both the Nd:YAG and CO\textsubscript{2} lasers have an impact on the soft tissues. Their ability to ablate residual titanium and/or cement may help enable the sites to successfully heal. In both case reports, a modification of a regenerative surgical algorithm was used and met with...
high success.19,20 This begins with the algorithm’s ability to decontaminate the infected implant surface21 but may in some instances fall short if soft tissue decontamination is not achieved.

The cause(s) of these titanium particles to be present in the surrounding soft tissues is currently unknown. There are several possible scenarios, with several having some supporting evidence from the literature. First, titanium particles might be produced during the insertion of the dental implant into the bone.22 Second, there may be dissolution of titanium from the dental implant into the submucosal plaque as a result of the peri-implantitis disease itself.23 Third, titanium particles might come from the micromotion present at the abutment-implant interface.24,25 Fourth, titanium particles might be produced when performing certain professionally administered hygiene procedures around the dental implant.26 The ability of both the Nd:YAG and CO\textsubscript{2} lasers to ablate the soft tissue of this particulate material while killing some of the residual translocated/invasive bacteria may facilitate soft and hard tissue healing.

Suárez-López Del Amo et al22 evaluated as part of their study the impact of the titanium debris that may be created. They took titanium debris that they created from dental implants and cultured the material with normal oral keratinocyte spontaneously immortalized cells. The authors determined that the particles/debris may contribute to the disruption of epithelial homeostasis and potentially compromise the oral epithelial barrier by damaging the cellular DNA. They also speculated that the particles could be the result of corrosive forces triggered through surface degradation and leaching of metal ions and debris. Nevertheless, further investigative work needs to be performed on this growing area of concern.

The results achieved in these two case reports are just a sample of a growing number of patients treated by these authors. To date, there are no controls to determine how the lasers are truly impacting the treatment outcomes. However, it is the authors’ collective observation from a number of their patients treated for peri-implantitis that it is a complex disease entity with many factors associated with its initiation and progression. The merit of adding laser treatment in those patients who have been appropriately treated with surgery and are not completely responding to care should be evaluated in controlled trials.

Conclusions

These two cases are, to the authors’ understanding, the first patient case reports in which the use of a laser following regenerative surgery provided a successful solution for residual pathology. Further case reports and controlled trials are needed to determine if each of these lasers would be successful with a larger patient cohort who were treated by a greater number of clinicians.

Acknowledgments

The authors declare no conflicts of interest.

References