Periosteal Inhibition Technique for Alveolar Ridge Preservation as It Applies to Implant Therapy

Vinh Nguyen, DDS, MSc
Nadine von Krockow, DDS, DMD
Joanne Pouchet, BSc, DDS, Dip Perio
Paul Martin Weigl, DMD

Alveolar ridge preservation procedures have been shown to significantly reduce the loss of ridge dimension of an extraction socket. As of yet, none of the alveolar ridge preservation techniques have been proven totally effective in preserving ridge morphology. The Periosteal Inhibition technique for alveolar ridge preservation involves placing a high-density polytetrafluoroethylene (d-PTFE) membrane between the periosteum and the buccal bone plate of an extraction socket. The authors hypothesize that the nonresorbable d-PTFE membrane, because of its much smaller pore diameter as compared to the size of the osteoclast precursor cells, inhibits the migration of the osteoclast precursor cells from the periosteum to the bony surface and, subsequently, their fusion to form osteoclasts. As a result, osteolytic activity on the outer surface of the socket is inhibited. The Periosteal Inhibition technique for alveolar ridge preservation is presented along with immediate implant treatment results using this treatment concept. The resulting stable ridge dimensions in these cases demonstrate a possibility that the d-PTFE membrane may effectively prevent modeling of the extraction socket by inhibiting the formation of osteoclasts on the outer bony surface.

Alveolar ridge preservation (ARP) procedures have been recommended to help reduce the loss of ridge dimension of an extraction socket.1–3 All of these procedures involve filling the socket with a bone graft material. In order to contain the graft material, an occlusive barrier such as an autogenous soft tissue graft or resorbable/nonresorbable membrane is often required. As of yet, no one ARP technique has been proven superior to another,2,3 and none have proven totally effective in preserving ridge morphology.3–5

In an animal histologic study in 2005, Araújo and Lindhe demonstrated that trauma and loss of periodontal ligament triggered an osteoclastic activity, causing loss of bundle bone and modeling of the cortical bone plate.6 Osteoclasts are multinucleated cells that are responsible for bone resorption and are found on the outer layer of bone, beneath the periosteum.7 They are thought to be derived from pluripotent hematopoietic stem cells.8,9 When stimulated, these mononuclear precursors, the smallest of which is 9.5 µm in diameter,10 proliferate and attach to the bone surface to be resorbed, and only then do they fuse to form large, mature multinucleated osteoclasts.11

High-density polytetrafluoroethylene (d-PTFE) membranes have been used in ARP procedures as...
an occlusive barrier to contain the bone graft material. The membrane porosity of less than 0.3 µm is impervious to bacteria and thus is recommended for a socket preservation technique, where a membrane is intentionally exposed.

The Periosteal Inhibition (PI) technique, introduced for the first time in this article, is the only ARP procedure to date targeting the prevention of the osteolytic activity on the external surface of an extraction socket. The technique involves placing a d-PTFE membrane between the periosteum and the buccal bone plate of an extraction socket and leaving it in place for 4 months, the time needed for the completion of bone formation within the socket. The authors hypothesize that the small-diameter pores (0.3 µm) in the nonresorbable d-PTFE membrane inhibit the passage of the precursor cells (9.5 µm) from the periosteum to the bone surface. Osteolytic activity on the outer surface of the socket is thereby prevented, as the precursor cells cannot form osteoclasts.

In this case series, the PI technique for ARP will be presented along with immediate implant treatment results using the same treatment concept.

Materials and Methods

Nine patients were selected for the study (seven ARP procedures and two immediate implant [II] placements), and all patients were healthy with no contributory factors. Specifically, patients who had no active infection present and had an intact buccal marginal bone were chosen to participate. Specific informed consent was obtained. A single dose of amoxicillin (2 g) was administered 1 hour before surgery. Under local anesthetic, atraumatic extractions were performed in order to minimize the alteration of the marginal bone. Extraction sockets were thoroughly debrided. Unless specified in the description of an individual case, the PI surgical procedure was performed in an identical fashion for both the ARP and II treatments, described as follows:

Using a #69 Nordland microblade, a sulcular incision was performed around the tooth to be extracted and also on the buccal sulcus of adjacent teeth. A conservative full-thickness envelope flap was elevated on the buccal side, extending from the mesiobuccal line angle of the distal tooth to the distobuccal line angle of the mesial tooth adjacent to the tooth to be removed. This extension allows visual inspection of the buccal bone plate thickness and condition. A thin periosteal elevator was used to detach buccal periosteum from the buccal bone to extend the flap more apically. The d-PTFE membrane (Cytoplast TXT-200 Single, Osteogenics) was trimmed to a height of 8 to 10 mm and a width great enough to cover the buccal bone plate between the proximal line angles of the extraction socket. The membrane corners were rounded to minimize membrane exposure. The membrane was inserted between the bone and the periosteum and secured to the buccal flap with a thin, nonresorbable monofilament suture. An absorbable gelatin sponge (Spongostan, Johnson & Johnson) was inserted in the extraction socket to help stabilize the blood clot.

In II cases, the gelatin sponge was placed between the implant and the buccal bone. These two II cases obtained a minimum torque of 35 Ncm, allowing the installation of a screw-retained provisional crown.

Membranes were removed at 4 months postoperative for all cases.

A template and ridge-mapping caliper were used to measure the preoperative and postoperative midfacial ridge width at 3 mm apical to the preoperative gingival margins for the seven ARP cases. Data for the seven ARP cases and two II cases are presented in Table 1. At 4 months postextraction, cone beam computed tomography (CBCT) images confirmed the stable dimensions of the PI technique for ridge preservation (Fig 1).

Socket Preservation

Case 1

A 42-year-old woman required the removal of a carious nonrestorable mandibular right first molar. An ARP procedure using the PI technique for delayed implant placement was selected. A surgical stent was used as reference to record midfacial ridge dimensions at the time of surgery and at reentry surgery. The surgical procedure was performed as previously described, with a small full-thickness envelope flap elevated on the buccal side.
The tooth was carefully removed, revealing the buccal bone to be less than 0.8 mm thick. Spongostan was placed in the socket, and a piece of d-PTFE membrane (8 × 10 mm) was inserted between the periosteum and the buccal bone. The textured surface of the membrane with the hex-shaped dimples was placed against the bone surface while the smooth surface of the membrane faced the periosteum (Fig 2a). The coronal margin of the membrane was positioned at the level of buccal bone margin, thus allowing complete submergence of the membrane after flap closure. To secure the d-PTFE membrane and to close the flap, simple interrupted PTFE sutures passed through the mesial and distal corners of the d-PTFE membrane along with the flap edges. The patient was seen at 1 week for assessment and at 2 weeks for suture removal. Thereafter, the patient was seen once a month to check for signs of early membrane exposure.

At 4 months postextraction, the soft tissue ridge dimension was stable (Fig 2b) and a CBCT scan showed well-preserved buccal bone plate (Fig 2c). A full-thickness envelope flap was then raised to remove the membrane and visualize the preserved ridge. The patient’s

<table>
<thead>
<tr>
<th>Cases, no.</th>
<th>Tooth no. (FDI system)</th>
<th>Initial buccal bone thickness (mm)</th>
<th>Soft tissue ridge width (mm)</th>
<th>Bony ridge width (mm)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Preoperative</td>
<td>Postoperative</td>
<td>∆</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>RP casesa</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>46</td>
<td>0.5</td>
<td>12.5</td>
<td>12.5</td>
</tr>
<tr>
<td>2</td>
<td>15</td>
<td>1.5</td>
<td>11</td>
<td>11</td>
</tr>
<tr>
<td>3</td>
<td>37</td>
<td>0.5</td>
<td>12.5</td>
<td>12</td>
</tr>
<tr>
<td>4</td>
<td>16</td>
<td>0.5</td>
<td>14</td>
<td>13.5</td>
</tr>
<tr>
<td>5</td>
<td>24</td>
<td>1.5</td>
<td>12</td>
<td>11.5</td>
</tr>
<tr>
<td>6</td>
<td>14</td>
<td>1.0</td>
<td>12</td>
<td>11</td>
</tr>
<tr>
<td>7</td>
<td>26</td>
<td>1.0</td>
<td>12</td>
<td>11.5</td>
</tr>
<tr>
<td>Mean RP</td>
<td></td>
<td>0.9</td>
<td>12.3</td>
<td>11.9</td>
</tr>
<tr>
<td>SD</td>
<td></td>
<td>0.4</td>
<td>0.9</td>
<td>0.9</td>
</tr>
<tr>
<td>II casesb</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>13</td>
<td>0.5</td>
<td>10</td>
<td>10</td>
</tr>
<tr>
<td>9</td>
<td>24</td>
<td>0.5</td>
<td>12</td>
<td>11.5</td>
</tr>
<tr>
<td>Mean II</td>
<td></td>
<td>0.5</td>
<td>11.0</td>
<td>10.8</td>
</tr>
<tr>
<td>SD</td>
<td></td>
<td>0</td>
<td>1.4</td>
<td>1.1</td>
</tr>
</tbody>
</table>

RP = ridge preservation; SD = standard deviation; II = immediate implant.
Measurements were taken at the midfacial position, 3 mm apical to the gingival margin, and rounded to the closest 0.5 mm.

a Postoperative measurements taken at 4 months after implant placement.
b Postoperative measurements taken at 15 months after implant placement.

Fig 1 CBCT images of the seven ridge preservation cases (patients 1 to 7, shown consecutively) taken at 4 months postextraction.
An osteotomy was prepared, and a Straumann tissue-level Standard Implant (SLActive; wide neck, 4.8 × 10 mm) was inserted achieving 35 Ncm torque (Fig 2e). The final screw-retained crown was delivered 3 months after implant placement.
Immediate Implant Placement

Case 8
A 64-year-old woman required an II placement in the maxillary right canine site. The tooth was not salvageable due to a vertical root fracture. The root was removed, and a 3.5 × 13-mm NobelActive implant (Nobel Biocare) was placed palatally, leaving 2.5 mm of buccal space. An envelope flap was raised, revealing 0.3 mm of buccal bone thickness (Fig 3a), which had a very prominent curvature. The d-PTFE membrane was trimmed as previously described and inserted under the full-thickness flap, closely following the curvature of the very thin buccal bone (Fig 3b). The membrane was sutured to the buccal flap using a horizontal mattress suture. A screw-retained temporary crown was fabricated using a temporary abutment and a polycarbonate temporary crown lined with flowable composite. Two simple interrupted interproximal sutures were used to close the flap (Fig 3c). At 4 months after implant placement, under local anesthetic, the d-PTFE membrane was removed through a small incision made in the buccal vestibule. The final impression was taken, and a screw-retained final crown was delivered (Figs 3d and 3e). At 12 months after crown installation, the buccal ridge contour appeared stable; preoperative and 16-month postoperative CBCT cross-sectional images demonstrate insignificant ridge alteration at the implant site (Fig 3f). The CBCTs, taken postoperatively for both Case 8 and Case 9, were incidentally required for the

Fig 3 Patient 8. (a) In this II case, an envelope flap was raised, revealing a thin buccal bone plate of the extraction socket of the maxillary right canine. An implant was inserted, leaving 2.5 mm of buccal space. (b) The d-PTFE membrane was inserted between the buccal bone and the full-thickness flap. (c) The membrane was secured to the buccal flap using a horizontal mattress suture, and the flap was closed with two simple interrupted proximal sutures. (d) Soft tissue profile just before the placement of the final crown. (e) The final screw-retained crown was placed on the treated maxillary right canine. (f) Preoperative and 16-month postoperative CBCTs demonstrate insignificant ridge alteration at the implant site.
planning of another implant placement in a different region of the patients’ mouths.

Case 9
Failed endodontic retreatment necessitated the removal of the maxillary left first premolar of a 58-year-old man. After the tooth was extracted, a semilunar incision was made in the vestibular mucosa and a flap was reflected to expose the periapical granulomatous lesion that had formed a fenestration on the buccal bony plate (Fig 4a). The lesion was thoroughly debrided, and an Ankylos implant (3.5 × 10 mm; Dentsply Sirona) was placed in the interradicular bone, leaving a 3-mm empty buccal root-socket space (Fig 4b). A small amount of Bio-Oss (Geistlich Pharma) was placed within the confinement of the apical bone defect only, and apical flap closure was done using simple interrupted sutures. A buccal full-thickness envelope flap was prepared, and a piece of d-PTFE membrane was inserted between the periosteum and the buccal bone as described previously. A horizontal mattress suture secured the d-PTFE membrane to the buccal envelope flap. Spongostan was placed in the buccal socket, and a healing abutment was placed (Fig 4c). Four months after implant placement, the d-PTFE membrane was removed through a small incision made in the buccal vestibule in the same manner mentioned in Case 8. The ridge dimension appeared stable (Fig 4d), and a screw-retained crown was fabricated and delivered (Fig 4e). Preoperative and 15-month postoperative CBCTs demonstrate insignificant ridge alteration at the implant site.
Discussion

Various ARP techniques have been introduced to lessen dimensional alterations of extraction sockets, including utilizing bone substitutes as scaffolding to minimize alterations.14–16 Although these procedures have been proven effective in preserving the alveolar bone for subsequent implant placement, they do not completely prevent dimension shrinkage,2,3 and thus additional tissue augmentation is often necessary to fully restore ridge dimension, especially in the esthetic regions. In addition, with the exception of a polylactide/polyglycolide sponge17 and calcium sulphate,18 a high percentage of residual nonvital graft materials are found in the grafted sites.15,19 Although this does not affect the stability of an implant, the long-term effect of residual ridge-preservation materials on implant survival still needs to be investigated. Cost of materials, long waiting times due to the slow turnover rate of bone substitute materials, and additional augmentation procedures are general drawbacks of these techniques. The PI technique preliminarily appears to overcome these disadvantages by effectively preserving ridge dimension without resorting to the use of bone grafting materials. The insignificant changes in ridge dimension observed with the PI technique presented in Table 1 show that ARP can be achieved with a d-PTFE membrane placed on the buccal ridge of the extraction socket while leaving sockets to heal with a blood clot alone. While conventional ARP procedures focus on promoting bone fill within the socket, the PI technique is the only nonaugmenting procedure that addresses the source of bone modeling from the outer bone wall: osteoclasts. The bone formation underneath the d-PTFE membrane, which appears to follow the hex-shaped dimple configuration of the membrane surface (seen in Case 1), is an indication that there is a lack of osteoclastic activity on the outer surface of the buccal bone plate. An absorbable gelatin sponge was used in the present study to obliterate the socket space and to hold the blood clot in place; it is completely resorbed in 4 to 6 weeks and is known not to promote bone formation.20,21 Concurrently, pure native bone formed within the socket from the blood clot alone is a great advantage of the PI technique in providing an implant placement with a high ratio of native bone to implant contact.

Studies have demonstrated that an II placement does not prevent the collapse of the buccal bone wall.22–24 Thus, as in ARP procedures, bone grafting has been recommended in II placement to fill the space between an implant and the buccal bone. In the present article, this was not seen in II placements using the PI technique. In the II cases presented in this article, only a blood clot was allowed to form in a large buccal gap. Together, with very thin existing buccal walls as observed in Cases 8 and 9, this would have resulted in significant loss in ridge morphology.25,26 Ridge dimensions in Cases 8 and 9 observed 16 months after the II placement appear stable.

Conclusions

The resulting stable ridge dimensions in this case series using the PI technique for ARP and II placement demonstrate a strong possibility that the d-PTFE membrane may effectively prevent modeling of the extraction socket by inhibiting the formation of osteoclasts on the outer bony surface. Further studies are needed to support the application of the PI technique in routine clinical practice.

Acknowledgments

The authors report no conflicts of interest related to this article.

References

