Immediate Postextraction Screw-Retained Partial and Full-Arch Rehabilitation: A 3-Year Follow-up Retrospective Clinical Study

Roberto Villa, MD, DDS1
Gabriele Villa, DDS1
Massimo Del Fabbro, MSc, PhD2,3

The aim of this study was to document the performance of a novel technique (OnlyOne), involving immediate restoration of postextraction implants supporting a partial or full-arch restoration. A retrospective analysis of patients with at least 3 years of follow-up was performed. Implants were tilted mesiodistally and vestibulopalatally according to the available bone. Prosthetically guided definitive abutments were connected at surgery and never disconnected. Anorganic bovine bone grafting was done to preserve the buccal bone and the ridge contour. Patients received a screw-retained provisional prosthesis within 24 hours of surgery and a final screw-retained prosthesis within 1 year. Prostheses emerged from natural soft tissue. Clinical and radiographic evaluation was routinely performed. A total of 70 patients received 153 implants in fresh extraction sockets. The mean follow-up was 38.0 ± 3.0 months (range 36 to 51 months). One implant failed at the 3-year follow-up. Implant survival was 99.3%. Marginal bone level change averaged −0.68 ± 1.2 mm at the last radiographic control. Immediate placement and restoration of implants designed for high primary stability with a definitive abutment placed at surgery and final screw-retained prosthesis with no artificial gingiva is a viable procedure with excellent medium-term outcomes. Int J Periodontics Restorative Dent 2018;38:627–635. doi: 10.11607/prd.3417

Several treatment options have been adopted to overcome bone resorption after tooth loss or extraction and enable implant treatment. One of the most popular approaches is placing the implants at an axis angulated with respect to the occlusal plane, taking advantage of the residual cortical bone. This protocol combined a reduced morbidity with a high implant survival and success rates over the medium to long term, as well as limited peri-implant bone level change. Most clinicians also loaded the tilted implants immediately, thereby reducing the treatment time, without compromising the clinical and radiographic outcomes. This technique, however, is often associated with poor esthetics of the soft tissues, as an artificial gingiva is mostly present in complete rehabilitations involving tilted implants. For implants placed in fresh postextraction sockets, immediate restoration means preservation of a functional stimulus on the alveolar bone, possibly reducing the marginal bone loss after implant placement.

A further concept involves immediate positioning of a definitive abutment to avoid multiple abutment removals and subsequent reconnections, which may have deleterious effects on the marginal peri-implant tissues. Though it is still controversial, some clinical studies demonstrated that avoiding...
abutment disconnection is associated with lower peri-implant crestal bone remodeling.10,11 Furthermore, this concept appears to have beneficial effects on the soft tissue interface around implants. In particular, the epithelial attachment tends to stabilize, avoiding the excessive recession observed with multiple abutment disconnections and reconnections, which may in turn drive reduction of the marginal bone level.8,12

The aim of this retrospective clinical study was to document the medium-term performance of a novel technique consisting of implants inserted in fresh postextraction sockets and restored immediately with definitive abutments connected at surgery and not disconnected thereafter, supporting rehabilitations emerging from natural soft tissue.

Materials and Methods

This report follows the STROBE guidelines for observational studies.13 All patients were treated according to the principles contained in the Helsinki Declaration of 1980 for biomedical research involving human subjects, as revised in 2000.14 The present study is a retrospective analysis of implants placed in postextraction sites with variable tilting and immediately rehabilitated using definitive abutments with the aim of preserving the soft tissue and the bone architecture. The analysis was based on a review of clinical charts from a single private center. All data were extracted by the treating clinician from the clinic’s standard documentation and deidentified prior to statistical analysis. Patients were selected for implant surgery according to the following inclusion criteria: aged at least 18 years and physically and psychologically able to undergo conventional surgical and restorative procedures (American Society of Anesthesiologists [ASA] class I or II). Presurgical radiologic assessment of the edentulous region included periapical radiographs, panoramic radiographs, and computed tomography.

All patients treated between April 2010 and December 2011 with variable-thread tapered implants (NobelActive, Nobel Biocare) placed in fresh postextraction sites with a variable angulation with respect to the occlusal plane, according to the local anatomy of the residual bone, were eligible for the analysis. Restorations could be supported by such immediate implants in combination with implants placed in healed sites, but the present analysis involved only the former. Additional inclusion criteria were implants coupled to tilted (17 or 30 degrees) or straight (0 degrees) multiunit abutments (Nobel Biocare) and provisionalized immediately; opposing dentition had to be present; and availability of readable periapical radiographs taken at implant insertion and at the longest follow-up, at least 3 years postsurgery. Patients who received additional implants in healed sites in the same jaw were included, but these additional implants were not part of the analysis.

Exclusion criteria for the surgical procedure were as follows: presence of uncontrolled systemic conditions such as diabetes mellitus or bone metabolic disease; smoking habit of 20 or more cigarettes per day; head or neck radiotherapy in the 12 months prior to surgery; presence of heavy parafunctions (eg, bruxism, clenching); and past or current therapy with intravenous bisphosphonates. Furthermore, patients with incomplete demographic (age, sex, smoking status, or systemic conditions) or clinical (implant outcomes, implant size, and location) data reporting were not included.

Surgical Procedures

Each patient received detailed explanation regarding the treatment and signed a consent form before the surgical procedure. One hour prior to surgery, patients took two tablets of amoxicillin plus clavulanic acid (875 + 125 mg per tablet, Augmentin, GlaxoSmithKline). They then rinsed with 0.12% chlorhexidine digluconate mouthrinse (Curasept, Curaden). Local anesthesia was induced using 2% mepivacaine (Carbopolynia, Dentsply). Implant site preparation was performed following the manufacturer’s recommendations. Immediately after traumatic tooth extraction with the aid of a periotome (Nobel Biocare), granulation tissue and remnants of soft tissue in the socket were removed, alveolar bone curettage was performed, and sockets were washed with an antibiotic solution (rifamycin sodium or metronidazole).15 Implants were then placed in postextraction sites with tilting at different angulations (vestibulopalatally/lingually, mesiodistally, or distomesially) to
maximize the engagement of the native bone beyond the alveolus. The angulation and position of the implants was planned in advance using a specialized software for digital treatment planning (NobelClinician, Nobel Biocare). This software for 3D reconstruction helped with a precise evaluation of the local bone anatomy and a careful planning of implant insertion. However, it was never used to prepare surgical guides. A flap or flapless protocol was used. Flaps were only raised at the palatal/lingual aspect to better engage the palatal/lingual bone and to avoid any damage to blood vessels in the mandible. Use of buccal flaps was intentionally avoided to prevent soft tissue recession. Implants were inserted with the platform as deep as 3 to 5 mm below the crest level to have the platform of the angulated abutment an average of 2 mm below the soft tissue margin, with the aim of favoring a natural emergence profile of the crown and to prevent any exposure of the buccal aspect of the abutment after soft tissue healing. Implants were always inserted by hand without a surgical stent. Insertion torque was measured with a torque wrench. On achievement of sufficient implant primary stability (insertion torque ≥ 35 Ncm), definitive abutments were connected and oriented to have the screw access hole toward the occlusal aspect of the prosthesis. If the minimum insertion torque of 35 Ncm could not be achieved, no immediate loading was performed. In all cases, the peri-implant gap in the extraction sockets was filled with anorganic bovine bone (Bio-Oss, Geistlich) to minimize buccal bone resorption. The postextraction sockets where implants were not placed were filled with Bio-Oss as well, to preserve the ridge contour. When dealing with full-arch rehabilitation, five or six implants were placed in the maxilla and four implants in the mandible. Finally, soft tissue was sutured and an impression was taken with Impregum Penta (3M ESPE). Within 24 hours of implant placement, a screw-retained, provisional prosthesis emerging from natural tissues and reinforced with a metal casting was mounted. Then, within 1 year, to allow for proper soft tissue healing and stabilization, the final zirconia full-arch or partial prosthesis without artificial gingiva, made in a dental lab, was screwed onto the abutments that had been placed during the initial surgery. All patients were requested to return for annual follow-up.

Outcome Measures

The primary outcomes of this study were as follows: (1) implant survival, defined as the proportion of implants present in the jaw supporting a prosthetic restoration; (2) prosthesis survival, defined as the proportion of functional prosthetic restorations in the absence of biological or mechanical complications; and (3) marginal bone level at the last follow-up. Marginal bone levels were evaluated on the basis of the periapical radiographs taken in accordance with the routine of the clinic using a paralleling technique with standard Rinn holders at the time of implant placement and at each postsurgical follow-up, with the implant platform and threads clearly visible. An independent radiologist in Gothenburg, Sweden, made the bone-height measurements. The distance between the implant platform and the most apical level of the marginal bone was measured. The first bone-to-implant contact evaluated by radiograph taken at final prosthesis delivery was defined as the baseline. In fact, the radiograph taken at surgery was considered unreliable due to the overfilling of the implant-bone gap with anorganic bovine bone. Secondary outcomes were as follows: (1) implant stability, clinically evaluated by means of two metallic instruments, applying opposing forces to the implant-abutment structure (an implant was judged as unstable if a clearly visible movement could be observed); (2) absence or presence of plaque on the surface of the abutment/restoration complex, by the naked eye or by running a periodontal probe; and (3) peri-implant soft tissue inflammation. The treating clinician assessed all clinical parameters.

Statistical Analysis

The analysis was carried out using SPSS Statistics for Windows (version 19.0, SPSS). An independent statistician performed the descriptive statistical analysis. Data were synthesized using the mean value and standard deviation (SD) for quantitative variables, and absolute or relative frequencies for qualitative variables. Independent samples
Kruskal-Wallis and Mann-Whitney U test were performed to determine whether the angulation and the diameter of the abutment, respectively, affected marginal bone level. An independent statistician performed the univariate analysis for risk indicators associated with bone level at last follow-up using the following variables: age, number of implants per patient, patient sex, diameter, length, abutment height, abutment angulation, follow-up, placement in maxilla or mandible, anterior or posterior position, opposite dentition, flap/flapless, in or out of occlusion, and type of rehabilitation. The Spearman test was used for quantitative variables, and the Wilcoxon rank sum test for qualitative variables. The significance level was set at $P = .05$.

Results

The study included 70 patients (46 women and 24 men). Mean age was 60.6 ± 12.6 years (range: 34 to 89 years). A total of 153 implants were placed in fresh postextraction sites by a single surgeon (R.V.). The reasons for extraction were destructive caries, periodontal lesion, endodontic lesion, combined periodontal lesion, and root fracture. A total of 141 implants were placed in the maxilla (33 incisors, 33 canines, 49 premolars, and 26 molars) and 12 in the mandible (2 incisors, 1 premolar, and 9 molars). Patients were rehabilitated by means of 42 partial prostheses (75 immediate implants) and 27 full prostheses (78 immediate implants).

The opposing dentition was an implant-supported prosthesis in 38 cases (24.8%) and natural teeth in 115 cases (75.2%). Implant diameter was 4.3 or 5 mm, and length ranged between 8.5 and 18 mm. A total of 97 implants (63.4%) were placed using a palatal/lingual flap procedure and 56 (36.6%) using a flapless procedure. All implants achieved an insertion torque of $> 35 \text{Ncm}$ and were immediately restored with a screw-retained provisional prosthesis. The majority of the provisional restorations (54.9%) were designed to avoid any occlusal contact on the opposing dentition.

All multiunit abutments had a regular platform diameter. Of the abutments, 29 had no angulation, 55 had an angulation of 17 degrees, and 69 had an angulation of 30 degrees. The final restoration was screw retained in all cases.

The mean follow-up was 38.0 ± 3.0 months, with a range of 36 to 51 months. One implant was reported as a failure at the last follow-up (36 months). The patient, a 56-year-old woman, received three study implants in the positions of the right second molar, right canine, and right central incisor. Additional implants placed in healed sites supported the prosthesis. All implants were loaded within 24 hours after placement. After 3 years, the study implant in the position of the maxillary right central incisor ($4.3 \times 13 \text{mm}$, abutment length 2.5mm, angulation 0 degrees) failed, without compromising prosthetic function. This implant displayed a lower than average marginal bone level at 3 years ($-6.7 \text{mm and} -2.4 \text{mm}$ at the mesial and distal aspects, respectively). Soft tissues around the implant also showed signs of mucositis, suggesting that late infection may have caused implant loss. The overall implant survival rate after 36 months was 99.3%. As no dropout occurred and only one implant failed after 3 years, cumulative survival rate (eg, actuarial life table according to Altman) was not calculated.

Readable intraoral radiographs taken at the last follow-up were available for 142 implants. In a few cases, only the mesial or distal bone level was readable. The mean marginal bone level was $-0.68 \pm 1.21 \text{mm}$. Neither mesial ($P = .93$) nor distal ($P = .43$) aspects were affected by implant angulation. Also, mean marginal bone level was not significantly influenced by the implant diameter ($P = .11$).

In the univariate analysis, none of the investigated variables were found to be associated with marginal bone level ($P > .05$ in all cases).

All implants/restorations showed absence of detectable plaque, indicating good oral hygiene level maintenance by the patients. Peri-implant mucosa was judged healthy (not inflamed) in 152 cases (99.3%); there was only one case of mucositis around the failed implant, as described above. No prosthetic failure occurred throughout the observation period, leading to a 100% prosthetic survival rate. Two clinical cases illustrating the technique are presented in Figs 1 and 2.
Discussion

This retrospective study evaluated the clinical and radiographic outcomes of dental implants placed in postextraction sites for immediate screw-retained partial and full-arch rehabilitations. The present approach, developed and named “OnlyOne” by the authors, was focused on bone preservation and avoidance of artificial gingiva. Several aspects of the technique aimed at the best possible use of the limited available bone. The tilting of the implants at insertion, where necessary, allowed avoidance of augmentation procedures, which are generally demanding for clinicians and patients and are often associated with increased surgical risks and higher financial cost. Prior studies with variable-thread tapered implants showed excellent results in protocols adopting the tilted implant concept to exploit the available residual bone, similar to the present study.16,17

Fig 1 First clinical case. A 61-year-old nonsmoking man presented with pain and mobility in the maxillary right posterior region. (a) Image from CT scan showing hopeless maxillary right first and second molars with a limited amount of residual bone. (b) After flapless extraction, an implant was placed in the healed site of the maxillary right first premolar with a straight axis. The implant in the position of the first molar was placed with a palatal-buccal tilt, and the implant in the position of the second molar was tilted about 45 degrees with respect to the occlusal plane, with the apex pointing distally. Mult-unit abutments were positioned and oriented so that the screw access hole was in the occlusal position of the prosthesis. Mult-unit abutments on the first and second molars were angled 30 degrees. (c) The provisional screw-retained prosthesis, reinforced with a metal casting kept out of centric occlusion, was connected 24 hours after surgery.
(d) Periapical radiograph of the implants supporting the provisional restoration, taken prior to the placement of the final prosthesis. Peri-implant bone condition appeared good. (e) Soft tissue healing at 1-year follow-up, showing excellent condition of the soft tissues. (f) Periapical radiograph taken at 2 years after implant placement, with the final restoration. (g) Periapical radiograph taken at the 3-year follow-up. All implants were stable, and a fair preservation of the marginal bone levels was observed. (h) Final screw-retained zirconia prosthesis 3 years after implant placement. The previous canine crown was replaced by a zirconia one. The peri-implant tissues appeared healthy, and a negligible amount of plaque was observed, indicating a good level of oral hygiene maintenance. The patient was highly satisfied with mastication function, esthetics, and phonetics.
Figs 2a to 2h Second clinical case. A 40-year-old nonsmoking woman with advanced generalized periodontal disease, unsuccessfully treated for years by her periodontist, complained of tooth mobility and poor esthetics. (a) Frontal view. (b) Presurgical panoramic radiograph showing the status of generalized advanced periodontal disease, which required extraction of all maxillary teeth. (c) Provisional full-arch screw-retained prosthesis reinforced with a metal casting was delivered 24 hours after the placement of six implants. (d–h) Periapical radiograph of the implants supporting the provisional restoration 1 year after implant placement. Implants were placed in the positions of the maxillary right first molar (d), first premolar (e), and central incisor (f), and the maxillary left central incisor (g), and canine and first molar (h).

Figs 2i to 2m (i) Final screw-retained zirconia prosthesis 3 years after implant placement. Soft tissue appeared healthy and the emergence profile of zirconia crowns looked natural. The patient was highly satisfied with the final result. (j–m) Periapical radiograph of the implants in the positions of the maxillary right first molar (j), first premolar (k), central incisors (l), and left canine and first molar (m), supporting the final restoration at the 3-year follow-up. Bone levels around implants were good.
In the present study, bone grafting was performed only for the purpose of socket preservation. With tilted implants, angulated abutments must be used to allow for a better loading force distribution and connection of a prosthetic restoration. The use of such abutments allows the surgeon wide flexibility in placing implants, which is particularly useful in patients with a limited amount of remaining bone after tooth extraction. In this kind of situation, choosing the regions that may provide optimal primary stability can be of critical importance. As a consequence, different possibilities are made available for the restorative dentist. Implants were inserted into fresh extraction sockets to exploit residual alveolar bone. The features of the study implant allowed achievement of a high implant primary stability with relative ease in either a flap or flapless approach without removing the existing bone. When using a flap approach, only palatal or lingual flap was elevated. Avoidance of buccal flap was aimed at preservation of the buccal gingival blood supply and at engagement of the palatal/lingual aspect of the alveolar bone, which is usually of better quality in comparison to the buccal one. Positioning implants in fresh extraction sockets along the lingual/palatal wall may play a key role in reducing the vertical bone resorption at the buccal aspect of the implants. In full-arch reconstructions after multiple extractions, implants were never placed in narrow sockets (eg, maxillary lateral incisor or mandibular incisors sites), to avoid the risk of dehiscence that is frequent at these sites after extraction. Careful digital treatment planning allowed maximization of the available bone without disconnecting the abutment placed during initial surgery and never moved again, to prevent excessive bone loss. Furthermore, the internal conical connection of the study implant with a built-in platform shift allowed for deep implant placement (up to 3 to 5 mm subcrestal) and angulated abutment connection to have the abutment platform 2 mm below the gingival margin. Hence, the prosthesis could emerge from the natural soft tissue, improving the esthetics. Poor esthetics is a frequent concern of other popular treatment concepts using tilted implants, like the All-on-4, in which an artificial gingiva (a pink base acrylic/ceramic material) is used to simulate soft tissues around crowns. An internal connection made the technique described in this paper feasible because it would have been difficult to connect the abutment to an external hexagonal connection of an implant placed deeply in a postextraction socket without any mismatch of the implant-abutment connection. The results achieved with this technique were excellent, as only one implant was lost after 3 years of function, and the marginal bone level was –0.68 ± 1.2 mm at 3 years, reflecting an optimal alveolar bone preservation.

The present results are in line with recent retrospective and prospective clinical studies about definitive multiunit abutments connected to implants immediately placed in multiple fresh extraction sockets. Clinical procedures have been shown to affect soft tissue health around dental implants. The elevation of a full mucoperiosteal flap may lead to marked bone loss and therefore influences the soft tissue behavior. In addition, the stability of the soft tissues may be influenced by the prosthetic treatment approach. In animal studies, it was found that repeated abutment disconnection and reconnection is associated with disruption of the mucosal seal and an increase in the size, as well as a more apical positioning, of the transmucosal barrier. Hence, as histologically confirmed, abutments should not be replaced once they have been connected. For this reason, placement of the definitive abutment on the day of surgery has been previously proposed. In a prospective clinical study, the group where the definitive abutment was placed at surgery showed significantly less bone loss compared to a control group using provisional abutments, up to 3 years of follow-up. Another multicenter randomized controlled trial confirmed this finding.

When connecting the definitive abutment immediately after surgery, the healing of the soft tissue takes place at the definitive restoration instead of at the healing abutment. Therefore, the emergence profile heals immediately toward an optimal shape. Furthermore, immediate placement of the definitive restoration abutment allows formation of a long junctional epithelium between the restoration abutment and the soft tissue, providing a proper seal, and should not
be separated again. This seal between the oral environment and the alveolar bone surrounding the implant is an important factor contributing to the long-term success of implant-supported restorations. The choice of implant type used in this study was based on the fact that these implants had been designed to achieve high primary stability and excellent esthetics, including in difficult situations such as fresh postextraction sockets.

A recent randomized study including 210 patients compared immediate implants, immediate-delayed implants (placed 6 weeks postextraction), and delayed implants (placed 4 months postextraction). The same implant as in the present study was used, though only single implants were considered, no angulated abutments were used, and no definitive abutment was placed at surgery. No statistically significant differences in implant failure rates, complication rates, and bone level changes were found among the three groups 1 year after loading, confirming the validity of the immediate implant approach.

Furthermore, better esthetic results were observed in the immediate and immediate-delayed procedure, in respect to the delayed one.

Conclusions

The results of this study indicate that positioning postextraction implants so as to take maximum advantage of the remaining bone, using implants designed for achieving a high primary stability and connecting them immediately to the definitive abutment, is a technique that offers a safe, effective, and well-accepted solution for immediate rehabilitation with screw-retained partial and full-arch prostheses.

Acknowledgments

This study was supported in part by a grant from Nobel Biocare (grant no. 2014-1321). The authors also thank Nobel Biocare for providing support with data analysis. The authors reported no conflicts of interest related to this study.

References

