Clinical and Histologic Evaluations of Immediately Placed SLA Dental Implants

Myron Nevins, DDS1/Stefano Parma-Benfenati, DDS2 Cosmin Sava, DDS3/Catalin Sava, DDS3 Franco Quinti, MD, DDS5/Primo Galletti, MD, DDS5 Gerardo Mendoza-Azpuru, DDS, MSc6/Erik Valdivia, DDS, MSc7 Yong-Han Koo, DDS8/David M. Kim, DDS, DMSc9

The goal of this investigation was to evaluate the bone-to-implant contact (BIC) of dental implants placed into fresh extraction sockets without pre-existing periapical pathology. When the extraction sites exhibited a gap distance of > 2 mm, autogenous bone harvested from surrounding surgical sites was grafted to fill that gap with no barrier membranes. All implants were clinically stable and successful at 6 months postoperative. The histologic examination demonstrated an average of 66.2% BIC for all five immediately placed dental implants. The results of this study provided sufficient histologic and histomorphometric knowledge to support immediate dental implant placement in carefully selected clinical scenarios. Int J Periodontics Restorative Dent 2018;38:165–170. doi: 10.11607/prd.3558

Dental implants are routinely placed into extraction sites with little clinical evidence to ensure bone-to-implant contact (BIC) in human dentitions. This investigation was initiated to assess BIC in immediately placed implants. Human histologic evidence of successfully osseointegrated implants is extremely rare in the literature due to lack of opportunities to retrieve implants in humans.1–5 A recent clinical study retrieved eight sandblasted with large grit and acid-etched (SLA)-surface dental implants placed into healed ridges from patients requiring full-mouth rehabilitation.6

As many clinicians and patients seek immediate implant placement for reasons including shorter surgical time, lower cost, and fewer office visits, a clinical study was conducted to provide a short-term observation of immediately placed implants in fresh extraction sockets without pre-existing apical pathology. This study examined the BIC of implants with a double-threaded tapered body design, internal conical connection, platform switching, and a cutting flat end.

Materials and Methods

Implant Surgery

Five individuals requiring dental implant rehabilitation agreed to sign
an informed consent form based on
the Helsinki Declaration of 1975, as
revised in 2000. The study was ap-
proved by the institutional review
board of Regina Maria Hospital in
Bucharest, Romania. Pre- and post-
surgical clinical examinations were
performed and thorough oral hy-
giene instruction given during each
patient visit. The screening process
involved clinical and radiographic
examinations to determine patient
eligibility. All patients presented
with periodontally compromised
dentitions requiring multiple ex-
tractions (Fig 1). On the day of the
surgery, all procedures performed
were routine with the exception of
a selection of the planned biopsy
(study) dental implants. Atraumatic
extractions were performed to pre-
serve the remaining walls of bone,
and dental implant (SuperLine,
Dentium) surgeries were conducted
as suggested by the manufacturer
under local anesthesia and sterile
conditions (Figs 2a and 2b). Study
implant sites had to present with
intact remaining bone walls without
pre-existing periapical pathology
(Fig 2b). When the extraction sites
exhibited a gap distance of > 2 mm,
autogenous bone harvested from
surrounding surgical sites was grafted
to fill that gap with no barrier
membranes. Additional nonstudy
implants were placed to support fi-
nal restoration. All implants received
healing abutments in a nonsub-
merged position, and nonresorb-
able sutures were placed to position
the flaps (Figs 2c and 2d).

There were no adverse events,
and the patients kept the planned
appointments for observation. Peri-
apical radiographs were made at
the 6-month surgical visit (Fig 3).

Dental Implant Biopsy

All surgical sites were allowed to
heal for 6 months before en bloc re-
moval of five preselected implants.
A piezosurgical instrument (Mect-
rony) was used to biopsy implants
that were 3.6 mm in width and 7 to
12 mm in length. These were imme-
diately immersed in a fixative solu-
tion for histologic preparation.

**Histologic and
Histomorphometric Analyses**

Fixed samples were dehydrated in
a graded series of ethanol (60%,
80%, 96%, and absolute ethanol)
using a dehydration system with
agitation and vacuum. The blocks
were infiltrated with Kulzer Techno-
vit 7200 VLC-resin. Infiltrated speci-
mens were placed into embedding
molds, and polymerization was per-
formed under blue and white light.
Polymerized blocks were sectioned
in a mesiodistal direction and paral-
lel to the long axis of each implant.
The slices were reduced by micro-
grinding and polishing using an
Exakt grinding unit to an even thick-
ness of 30 to 40 µm. Sections were
stained with RBS, counterstained
with acid fuchsin, and examined
using a Leica MZ16 stereomicro-
scope and a Leica 6000DRB light
microscope. Histomorphometric
measurements were performed
using software (ImageAcess, Imag-
ic) to calculate the percentage of
mineralized bone, soft tissue com-
ponents (connective tissue and/or

Fig 1 (a) A 68-year-old woman presented with failing maxillary dentition and agreed to receive dental implant restoration. (b) Periapical radiographs revealed few remaining teeth with moderate to severe bone loss associated with short roots.
bone marrow) and residual graft particles along the BIC surface.

Results

Clinical and Radiographic Observations

All dental implants were successfully placed and achieved clinical osseointegration with no signs of adverse events (Fig 3). Necessary dental implants were placed for five patients, and biopsies were performed on five implants for evaluation. All biopsy reconstructive areas healed uneventfully. Radiographic evaluation demonstrated excellent maintenance of crestal bone level around dental implants. Each patient was prosthetically reconstructed.

Histologic Observations

All histologic specimens demonstrated adequate BIC (Fig 4). Newly formed dense bone was found in contact with the implant surfaces along with normal bone marrow spaces and vasculature. The crestal bone was occlusal to the threads in most specimens.
Histomorphometric Analysis

Light microscopy revealed excellent BIC in all groups. The mean BIC was 66.2% for all five implants, ranging from 57.9% to 70.5%.

Discussion

Osseointegration of titanium dental implants has been long demonstrated to be safe and efficacious. The initial publication of dental implant placement into an extraction socket was in 1989. The advantages included fewer surgical procedures, reduced cost, and fewer patient visits. Case reports have documented excellent healing and shorter treatment time together with the perception of preservation of alveolar bone. Dental implants placed in infected sites with periapical lesions have been shown to be successful but were excluded in this study. Case selection and the surgeon’s clinical experience in implant dentistry is of utmost importance in immediate dental implant therapy. A 3-year retrospective chart review of immediate dental implants placed by either experienced senior surgeons (expert group) or residents (nonexpert group) noted a significantly higher ($P = .0044$) bone loss in the nonexpert group than in the expert group. In addition, more gingival recession and less satisfaction were reported for patients treated by nonexperts.

Fig 4 All histologic specimens demonstrated significant bone-to-implant contact. Newly formed dense bone was found in contact with the implant surfaces with normal bone marrow spaces and vasculature.
surgical techniques resulting in use of platform-switched dental implants, flapless surgical technique, insertion of grafting material between the implant and the socket wall, immediate provisionalization, and addition of a connective tissue graft should be considered to preserve soft and hard tissue formation around immediately placed implants.16–20

Implants with a moderately rough surface allows for macrorough surface topography from sandblasting and microrough surface topography from acid-etching have been proven to be successful.21–25 A number of university and hospital-based treatment centers have demonstrated successful results with SLA surface implants.26–33 In a 10-year retrospective radiographic study of 242 SLA surface dental implants, Park et al.13 reported a 97.9% implant survival rate and an overall mean bone loss of −0.28 ± 0.05 mm.33 Several preclinical and clinical studies demonstrate its safety and effectiveness in native and regenerated bone.6,34,35

The BIC observed histologically in this investigation was comparable to that seen in a clinical study on implants placed into healed ridges.6

A limitation of this study is that the biopsy specimens were not prosthetically loaded. Nonetheless, adjacent loaded implants did not experience significant crestal bone remodeling but demonstrated an ability to support prostheses (Fig 5).

Conclusions

The results of this human histologic investigation confirm the osseointegration of immediately placed SLA surface dental implants. All specimens demonstrated sufficient BIC to support forthcoming prostheses.

Acknowledgments

This study was supported by a grant from Dentium Co, Ltd. The authors reported no conflicts of interest related to this study.

References

