Conventional approaches to full-arch implant dentistry require a verified master model created by luting together impression jigs. This process involves numerous steps and is sometimes prone to errors that require subsequent correction. A novel approach involving an extraoral scanning technique using an Imetric 4D Imaging system demonstrates an alternative for same-day delivery of printed full-arch prosthetics. Advantages include the ability to offer a same-day provisional restoration without needing to verify an analog master cast. Int J Periodontics Restorative Dent 2022;42:587–593. doi: 10.11607/prd.6048

A Digital Approach to Immediate-Load, Full-Arch Implant Dentistry: A Case Report

Mark Bishara, DDS1
Richard J. Miron, DMD, MSc, PhD2
Gregori M. Kurtzman, DDS3
Naif Sinada, DMD4
David T. Wu, DMD5

Conventional approaches to full-arch implant dentistry require a verified master model created by luting together impression jigs. This process involves numerous steps and is sometimes prone to errors that require subsequent correction. A novel approach involving an extraoral scanning technique using an Imetric 4D Imaging system demonstrates an alternative for same-day delivery of printed full-arch prosthetics. Advantages include the ability to offer a same-day provisional restoration without needing to verify an analog master cast. Int J Periodontics Restorative Dent 2022;42:587–593. doi: 10.11607/prd.6048

Traditional approaches to full-arch implant dentistry require an initial accurate impression using vinyl polysiloxane.1 This can present its own challenges, including ensuring that the impression copings are fully seated intraorally, to inherent limitations caused by the impression material itself and insertion of lab analogs correctly to fabricate the working model. Advances with intraoral scanning utilizing scanbodies allow for an improvement in the process using a digital approach. However, scanning multiple adjacent scanbodies has proven to be a clinical challenge.2 This is especially true in the case of multiple splinted implants, as found in typical hybrid full-arch implant cases.3,4 The following case presentation exemplifies an improvement from traditional approaches whereby a full digital approach is used to deliver a same-day temporization option without needing a traditional analog-based model or subsequent master model verification.

Conventional Digital Approach

In a conventional digital approach, implant scanbodies are connected to the implants for digital scanning. Typically, the scanbodies used for
full-arch implant cases are connected to multi-unit abutments (MUAs). This increases the passivity of the final prosthesis by ensuring parallelism of the implants through the angle correction provided by the MUA. Similar to a panoramic image, an intraoral scan consists of multiple images that are stitched together using common overlapping data between one image and the next. That process of data extrapolation introduces slight errors that can add up as the number of images needed for full-arch scanning increases. The literature is unclear on the accuracy of full-arch intraoral scanning in edentulous cases; this is especially important because most testing is done using benchtop models that do not replicate the difficulty of capturing accurate data in the intraoral environment due to the present blood and saliva.

Currently, the gold standard for restoring adjacent implants is to lute together impression jigs, creating a verification jig (stent) that ensures that the implants are captured in an accurate relationship to each other. Then, the model is created via a “corrected cast.” The process involves an initial accurate impression, fabrication of a verification jig and custom tray, repouring the model if necessary, or cutting the verification jig if any distortion or misfits are apparent during the try-in. The verification jig is then captured in an open-tray impression, and a soft tissue model is fabricated.

Photogrammetry

Photogrammetry is a technique that generates 3D coordinates of specific points identified from multiple images of the same object obtained at different angles. The ICam4D unit (Imetric 4D Imaging) is a handheld camera unit that consists of four cameras and one projector. By combining photogrammetry and structured-light scanning techniques, this unit can capture 3D data for an accurate representation of implant positions relative to each other (Fig 1). By using the equivalent of implant scanbodies in the form of ICamBodies, which have a unique target arrangement (Fig 2), the unit can determine the position and orientation of the implants.

Another critical component of the ICam 4D system is the ICam-Refs, which are placed directly on the MUAs. These are similar to traditional healing abutments but with a smaller profile height, which facilitates soft tissue capture either by a
traditional impression of the gingiva or by capture with an intraoral scanner. Imetric 4D software then allows the user to transform the captured implant positions into the coordinate system of the gingiva using ICamRefs. This information is then exported into a design software, such as Exocad, which was used in the present case.

To maintain a constant reference point between the temporary design and mouth, one of two strategies can be utilized. One approach involves keeping two or three teeth until the end of the procedure, which can be subsequently extracted once the implant positions have been confirmed. The other strategy involves placing constant reference points (such as palatal screws) at the start of the procedure, subsequently scanning them or recording them through physical impression. By maintaining a constant reference point, the clinician can refer to the temporary design in Exocad without losing reference of the orientation.

Same-Day Provisional Restoration Case

A 72-year-old healthy woman (Fig 3a) presented to the first author’s (M.B.) private practice with a failing maxillary long-span partial denture (Fig 3b). After discussing the available options, a provisional restoration solution using implants was offered and accepted by the patient. Diagnostic records included smiling photos, intraoral scans (Medit i500, Medit), and CBCT scans (CS 8100 3D, Carestream) were taken, and temporary designs in Exocad were printed on the same day of surgery using temporary resin (Freeprint Temp, Detax) on a MAX printer (Asiga) (Fig 4).

Grand Morse implants (Neodent) were placed in a free-handed fashion based on the surgical plan designed in coDiagnostiX software (Dental Wings; Fig 5); in this case, the presence of artifacts from the existing metallic partial denture would...
have made it difficult to merge the DICOM (Digital Imaging and Communications in Medicine) data for a fully guided approach. A palatal screw and bilateral second molar implant crowns were used to maintain the orientation of the design relative to the temporary partial denture design prior to surgical implant placement (Fig 6). Once the anterior teeth were extracted, tenting screws helped orient the ridge to the preoperative condition in the design software. This is a crucial step in aligning the implant positions with the suggested temporary design created prior to surgery. The implants achieved a minimum insertion torque of 35 Ncm each, allowing for placement of the MUA (Fig 7). ICamBodies were attached to the MUAs intraorally in preparation for scanning for Imetric 4D records (Fig 8).

Once the Imetric 4D records were captured (Fig 9), the palatal screw could be removed while waiting for the printing and design processes to be completed (Fig 10). Once printing was complete, the temporary partial restoration was detached from the stacks and polished (Fig 11), then inserted intraorally (Fig 12). Screws were placed and tightened by hand, and the occlusion was checked and adjusted as needed.

Two months elapsed to allow osseointegration to occur, and then the final prosthesis records were completed by capturing any soft tissue changes underneath the temporary restoration and confirming implant osseointegration. One implant in the maxillary molar area did not osseointegrate and was subsequently removed prior to fabrication of the final monolithic zirconia partial denture. Because the verified implant positions were captured at the surgical appointment, a final Imetric 4D record was taken to include the single maxillary second molar implant crown in the second quadrant, where an MUA was placed instead. Figure 13 shows the final monolithic zirconia partial denture in place, and Fig 14 shows the panoramic radiographic view.
Discussion

The ability to provide a tension-free (passive) connection between the implants and the prosthetic structure is critical for long-term success. This can be achieved only by ensuring a passive fit by minimizing inherent margins of error while eliminating any stress on the individual implants when connecting them with the temporary prosthesis.

Photographs and video scanners share some of the advantages of photogrammetry. Scanners generate 3D images by stitching multiple images together using a best-fit algorithm. However, the reliability
diminishes as the number of implants involved increases, which increases the number of images stitched together. In contrast with intraoral scanners, photogrammetry generates direct vectors of the exact position of the implants in relation to one another. This information makes it possible to calculate the implant positions without superimposing photos. Therefore, the accuracy is increased, and potential errors are eliminated.

The clinical evaluation of passivity between the implants and the prosthetic components is challenging. The Sheffield test has been shown to be an efficient clinical test of passive fit, especially in cases with multiple implants. The screw-resistance test has the disadvantage of introducing subjectivity into the evaluation but is considered a precise way of detecting discrepancies.

In the present case, the Imetric 4D workflow allows for the same-day delivery of a temporary prosthesis without the need for a verification jig or corrected cast. This saves both the clinician and patient a number of appointments, shortens the overall treatment time, and ensures that a passive fit is achieved on the final prosthetic restoration.

Registering the implant positions with the Imetric 4D workflow improves patient comfort in comparison with conventional impression techniques. By eliminating physical impression materials, the practitioner can avoid patient nausea and discomfort, which is also a critical issue in those with a strong gag reflex.

Conclusions

The clinical application of a novel photogrammetry system for registering multiple implant positions at the time of surgery allows for patient rehabilitation using the same-day delivery of a printed prosthesis. As the cost of digital dentistry becomes more accessible for clinicians, more patients can be treated with fewer clinical visits and better accuracy. Future trends include improving the material strength of the printed provisional restorations to allow for a longer temporization period, if needed.

Acknowledgments

The authors declare no conflicts of interest.

References