A surgical guide that is fabricated through computer-aided design/computer-aided manufacturing (CAD/CAM) or laboratory-based conventional procedures has been used in an attempt to increase the accuracy of implant placement. Computer-guided surgery enables flapless implant insertion and reduces the surgical time, postoperative pain, and swelling. It can facilitate the immediate insertion of prefabricated fixed prostheses, which improves patient satisfaction. Furthermore, it can achieve higher precision and accuracy in cases of high esthetic demand and insufficient bone height. However, it involves an increase in planning time and additional costs relating to the planning software and the production of the stereolithographic surgical guide.

In 2012, as a part of the third European Association of Osseointegration (EAO) conference on computer-guided surgery, a group of eminent members analyzed two systematic reviews and a meta-analysis on the accuracy of guided surgery. They concluded that, “Guided surgery does not guarantee a precise implant placement.” The authors reported a mean deviation of 1.09 mm at entry, 1.28 mm at the apex, and 3.9 degrees in angulation of implants inserted using guided surgery techniques. In the horizontal and vertical directions, the mean error was 1.2 mm and 0.5 mm, respectively.
Precision in implant placement, when a stereolithographic surgical guide is used, depends on multiple factors that lead to cumulative and interactive errors, from data-set acquisition to the surgical procedure.\(^5\) The first group of errors is incorporated during the fabrication of the stereolithographic surgical guide, such as errors in cone beam computed tomography (CBCT) image acquisition,\(^6,7\) surface registrations of the CBCT, and the dental record.\(^8,9\)

The second group of errors is related to the type of guide support during surgery, which could be bone, mucosa, or tooth support.\(^10\) Multiple studies have confirmed that the magnitude of error increases when bone-supported guides are used,\(^5,10\) whereas a tooth-supported template for the treatment of single missing teeth results in greater accuracy of implant positioning than with mucosa-supported or bone-supported templates.\(^3\) The third group of errors emerges during surgery, which could be either fully guided or partially guided. The partially guided surgery involves one or more steps of freehand drilling and freehand implant insertion. More accurate results are achieved with the fully guided surgery approach.\(^11,12\)

Finally, the 3rd EAO research group added one more factor that might affect the accuracy during surgery, which is the surgeon experience. It was mentioned that guided implant surgery is technically demanding, and the belief that “less training is needed” is far from accurate. Furthermore, they stated that the surgical skills and experience of the clinician using this surgical technique go above and beyond those necessary for providing regular implant surgery.\(^1\)

Multiple in vitro studies have shown the statistically significant effect of surgeon experience on the accuracy of guided implant placement. More experienced surgeons have placed more implants accurately when a bone-supported stereolithographic surgical guide is used, as there was a statistically significant difference for the angular and horizontal error at the implant apex and platform.\(^13\) Similar results were obtained when different teeth-supported surgical guides were used, and it was found that experienced surgeons perform with less error in the buccolingual implant angulation. The authors anticipated that the magnitude of deviation in accuracy of implant angulation would be higher if novice surgeons operated in a real clinical setting.\(^14\)

The real clinical setting is a complex environment that might exert a cognitive load on novice learners, negatively affecting their performance. In undergraduate dental education and implant residency programs, there is always a balance between allowing trainees to operate independently and the need to achieve the intended functional and esthetic outcomes. Therefore, the use of a stereolithographic surgical guide might help trainees to increase the accuracy of implant placement in the clinical setting, which could provide an opportunity for using computer-guided implant surgery as a scaffold between implant simulation training on models in vitro and freehand surgery on patients.

The purpose of this study was to measure the influence of surgeon experience on the accuracy of implant placement using teeth-supported surgical guides via partially guided surgical protocols in a real clinical setting. The study independent variable was the surgeon experience, whereas the dependent variables were the degree of mesiodistal and buccolingual deviations of the inserted implants from the planned placement. The investigators hypothesized that the expert surgeons should place implants more accurately than the novice surgeons.

MATERIALS AND METHODS

Study Design and Sampling

To address the research purpose, the investigators designed and implemented a randomized controlled study. The study population was composed of all patients presenting to the oral and maxillofacial surgery department for replacing missing teeth between March 2016 and December 2017. This study was approved by the ethical committee of the university, and all participants signed an informed consent agreement (IRB number 2015-02-101).

In this study, there were two samples to describe and define: patients and clinicians. The patients’ sample size was calculated based on angular deviations, which were recorded in previous in vitro studies\(^13,15\) (2.19, 3.96, and 7.63 degrees), and expected standard deviation of 1.4 degrees. A sample size of 10 patients per group was needed to obtain a power of 80% with a confidence level of 95%. The patients were randomized into two groups (10 patients/group). All the patients accepted the treatment plans and provided signed informed consent for the surgery and the photographs.

To be included in the study sample, patients had to be medically fit, have remaining teeth that can support the surgical guide, and have missing teeth posterior to the canine tooth. The edentulous area should involve healed bone sites at least 3 months after extraction with no history of bone graft, and have bone height of at least 8 mm from the alveolar crest to the nearest vital structure and bone width of at least 2 mm beyond the intended implant diameter. Patients were excluded as study subjects if they were fully edentulous, pregnant, tobacco smokers of more than 10 cigarettes per day, or if the edentulous sites required hard or soft tissue augmentation at the time of implant placement.
In regard to the clinicians, four clinicians (two experts and two novices) participated in the study. The novice surgeons are those who had completed theoretical training on dental implants and participated as observers only in previous implant surgical procedures on real patients. The expert surgeons had independently placed more than 100 implants through guided and conventional approaches over the past 2 years.

Study Variables
The main independent variable was the surgeon experience (expert vs novice). Moreover, the study considered the size of the implant as a second independent variable, as it affects the number of osteotomies required before implant insertion, which might affect the accuracy. The primary outcome variable was the accuracy of implant placement, which is calculated based on the difference in the angular deviation of the real implants from the virtual one. Implant placement was considered accurate if the angular deviation was less than 7.6 ± 1.4, which was the maximum reported deviation in an in vitro study.

Preoperative Planning
The two groups of patients received the same surgical intervention by two different groups of surgeons. Group 1 received implants by two expert oral surgeons using a teeth-supported stereolithographic surgical guide. Group 2 received implants by two novice oral surgeons using the same type of surgical guide (teeth-supported stereolithographic surgical guide). All surgical guides were manufactured of the same materials using the same printing technology and supplied by the same manufacturer (Dentsply Implants).

All patients (N = 20) were examined by an expert surgeon and expert prosthodontist, who formulated the implant treatment plan (H.F.M., H.M.). Optical scanning was performed on patient preoperative study models (with and without wax pattern) to make two three-dimensional (3D) digital models per patient. Images (STL file) were imported and uploaded with the patient preoperative CBCT DICOM images (Kodak CS 9300, Kodak Dental Systems, Carestream Health) that were previously taken at 85 kV and 6 mA, voxel size 250 µm, to Simplant pro 17 software (Dentsply Implants). The images of the model were registered on the preoperative DICOM images based on a three-point surface registration technique that is offered by the planning software.

One expert surgeon planned all the implants (N = 40) in the most optimal position based on the available bone, vital structures, and the prosthetic demands (scanned wax pattern). For all patients (N = 20) with guided surgery, the planning was transferred to the manufacturer (Dentsply Implants) for the fabrication of a stereolithographic drill guide. The implant parameters (mesiodistal and buccolingual angulations) were retrieved from the Simplant software. These measurements correspond to the virtual planning.

Operative and Postoperative Protocol
Implant drilling and placement for groups 1 and 2 were performed under local anesthesia through a flapless surgical technique. During surgery, the stability of the surgical guide before and during drilling was checked and confirmed by an expert surgeon. Extra transmucosal fixation of the guide using 1.5-mm bone screws was performed in cases of posterior free-end saddles (Figs 1 to 4).
For groups 1 and 2, the drilling procedure involved the use of a universal surgical Simplant Kit (Simplant, Dentsply Implants). It involved drill keys to be inserted in the sleeves within the surgical guide, to guide the consecutive drills with different diameters in the correct positions and planned angulation. Different keys (2.2, 2.8, and 3.2 mm) with increasing diameters are available to guide each separate drill. The drilling depth corresponds to the planned implant length and the height of the sleeves. Therefore, the drilling has to go to the full drill length to achieve the desired implant length. All the drilling steps stop at a drill 3.2 mm in diameter; then, the osteotomy is finalized by the corresponding implant system drills (Zimmer Dental).

The surgical guide was removed to finalize the osteotomy in freehand. Freehand drilling involves one drill (3.4 mm) to place a 3.7-mm implant with a regular platform of 3.5 mm, two drills (3.4 and 3.8 mm) to place 4.1-mm implants with a regular platform of 3.5 mm, and three drills (3.4, 3.8, and 4.4 mm) to place 4.7-mm implants with a wide platform of 4.5 mm. Physical stoppers were present on all drills when the osteotomy was finalized to control the drilling depth. All implants (Tapered Screw Vent MTX) were inserted using the corresponding surgical kit. Implant insertion into the osteotomy for the two groups was performed in the freehand technique.

One week after implant placement, a CBCT scan (Kodak CS 9300, Carestream Health) was taken using the same parameters to check the final position of the implants. The postoperative DICOM images were imported to Simplant software. Using the Simplant library, implants were selected and placed virtually over the real implants that appear in the DICOM images. Images were checked in axial, coronal, sagittal, and 3D plans to ensure complete surface registration of the virtually placed implants and the real inserted implants.

Data Collection
Using the implant properties option in the software, the mesiodistal and buccolingual angle measurements of the virtually placed implants were retrieved (Figs 5 and 6). Because there is a complete surface overlap of images, these measurements correspond to the real implant parameters (mesiodistal and buccolingual angulation of the real inserted implant). After 1 week, another investigator (A.A.), who was blinded to the intervention, checked the accuracy of image overlap and made any necessary changes; then, the parameters of the real inserted implants (mesiodistal and buccolingual angulation) were retrieved for the second time. There was a significant positive correlation between the two raters. Therefore, the mean angulation of the first and second measurements was considered to be the final measurement.

Data Analysis
All measurements were collected and tabulated using Microsoft Excel; then, a mathematical calculation was performed to find the angular deviation of the inserted implants from the planned one for all the groups. A two-way analysis of variance (ANOVA) test was applied using IBM SPSS statistics (version 22) to determine the influence of surgeon experience, implant size, and the interaction effect of surgeon experience and implant size on the angular deviation. To determine the interexaminer variability, the Pearson correlation coefficient (−1: perfect negative correlation, 1: perfect positive correlation) was calculated for the angular deviation.

Fig 5 (Left) Using implant property tool in Simplant software to calculate the buccolingual and mesiodistal angles of the virtual plan of implant at mandibular left second molar site.

Fig 6 (Right) Buccolingual and mesiodistal angles of the real inserted implant at mandibular left second molar site.
RESULTS

A total of 20 patients (13 women, 7 men; mean age = 47.1 ± 10.3 years) participated in the present study, and received a total of 40 implants. Group 1 (5 women and 5 men) received 25 implants, and group 2 (8 women and 2 men) received 15 implants. All patients successfully received the implants, and there was no peri-implant infection among the patients. Patients reported pain and minimal swelling that lasted for 3 to 5 days after the surgery.

With regard to the effect of surgeon experience, there was no significant difference ($P = .453$) in the mesiodistal deviation between the expert and novice groups, as the mean deviation for the expert group was 5.6 ± 4.3, whereas it was 4.2 ± 2.94 for the novice group. In a buccolingual direction, there was a significant difference ($P = .009$) in deviation between the expert and novice surgeons. The expert group performed more accurate implant placement (mean deviation = 3.7 ± 3.35) in a buccolingual direction when compared with the novice surgeons (mean deviation = 8.5 ± 6.3).

With regard to the effect of implant size (Table 1), there was no significant effect of the implant size on the degree of angular deviations either in the mesiodistal ($P = .709$) or in the buccolingual direction ($P = .734$). With regard to the interaction effect of experience and implant size on the degree of angular deviation, there was no significant difference between expert regular, expert wide, novice regular, and novice wide groups in both the mesiodistal ($P = .302$) and the buccolingual directions ($P = .580$).

DISCUSSION

The present study evaluated the influence of surgeon experience on the accuracy of implant placement via a partially guided surgical approach. It was found that the expert group performed more accurate implant placement in a buccolingual direction when compared with the novice surgeons, which was aligned with the hypothesis.

Multiple in vitro studies found a statistically significant difference between the experienced and inexperienced surgeons for angular and horizontal error at the implant apex and platform.13,14 The degree of buccolingual deviation in the expert surgeon group in the present study was within the normal range of previous studies. The expert surgeon group in a study by Cushen and Turkylmaz13 performed with a horizontal angular deviation of 3.96 ± 1.64. It is considered a small amount of deviation if compared with the novice surgeon group in the present study, who performed a deviation error of 8.5 ± 6.3. The difference between the present study and Cushen and Turkylmaz’s study could be due to the clinical environment in both studies. In the present study, novice surgeons operated on real patients, whereas in Cushen and Turkylmaz’s study, novice surgeons operated in vitro on a photopolymer resin edentulous mandible.

Cassetta and Bellardini16 evaluated the role of surgeon experience in the clinical setting using a mucosa-supported surgical guide in completely edentulous patients. The authors found no significant difference between the novice and expert surgeon groups. The amount of angular deviation of the novice surgeon group was 3.07, whereas the angular deviation of the expert surgeon group was 3.21. Such results are different from the results of the present study due to the characterization of the novice operators in the study by Cassetta and Bellardini. The novice operators in their study were five surgeons who have placed approximately 500 implants conventionally without guided surgery, whereas the novice group in the present

Table 1

<table>
<thead>
<tr>
<th>Surgeon</th>
<th>Platform</th>
<th>Mean</th>
<th>SD</th>
<th>n</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mesiodistal deviation</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Expert</td>
<td>Regular</td>
<td>5.9940</td>
<td>4.75878</td>
<td>15</td>
</tr>
<tr>
<td></td>
<td>Wide</td>
<td>5.0930</td>
<td>3.76525</td>
<td>10</td>
</tr>
<tr>
<td></td>
<td>Total</td>
<td>5.6336</td>
<td>4.32776</td>
<td>25</td>
</tr>
<tr>
<td>Novice</td>
<td>Regular</td>
<td>3.5730</td>
<td>3.05511</td>
<td>10</td>
</tr>
<tr>
<td></td>
<td>Wide</td>
<td>5.4800</td>
<td>2.50265</td>
<td>5</td>
</tr>
<tr>
<td></td>
<td>Total</td>
<td>4.2087</td>
<td>2.94204</td>
<td>15</td>
</tr>
<tr>
<td>Total</td>
<td>Regular</td>
<td>5.0256</td>
<td>4.26329</td>
<td>25</td>
</tr>
<tr>
<td></td>
<td>Wide</td>
<td>5.2220</td>
<td>3.30742</td>
<td>15</td>
</tr>
<tr>
<td></td>
<td>Total</td>
<td>5.0993</td>
<td>3.88858</td>
<td>20</td>
</tr>
<tr>
<td>Buccolingual deviation</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Expert</td>
<td>Regular</td>
<td>3.6247</td>
<td>3.08099</td>
<td>15</td>
</tr>
<tr>
<td></td>
<td>Wide</td>
<td>3.9790</td>
<td>3.90319</td>
<td>10</td>
</tr>
<tr>
<td></td>
<td>Total</td>
<td>3.7664</td>
<td>3.35883</td>
<td>25</td>
</tr>
<tr>
<td>Novice</td>
<td>Regular</td>
<td>9.0420</td>
<td>6.57751</td>
<td>10</td>
</tr>
<tr>
<td></td>
<td>Wide</td>
<td>7.5660</td>
<td>6.47119</td>
<td>5</td>
</tr>
<tr>
<td></td>
<td>Total</td>
<td>8.5500</td>
<td>6.34789</td>
<td>15</td>
</tr>
<tr>
<td>Total</td>
<td>Regular</td>
<td>5.7916</td>
<td>5.39426</td>
<td>25</td>
</tr>
<tr>
<td></td>
<td>Wide</td>
<td>5.1747</td>
<td>4.98217</td>
<td>15</td>
</tr>
<tr>
<td></td>
<td>Total</td>
<td>5.5602</td>
<td>5.18733</td>
<td>40</td>
</tr>
</tbody>
</table>
study were surgeons who had no clinical experience in implant placement. However, the authors reported a significant effect of surgeon experience on the accuracy of the position of the surgical guide, indicating a high positioning error for the inexperienced group, which resulted in high apical and coronal horizontal deviation. In the present study, all cases involved a teeth-supported surgical guide to eliminate any systemic error that might result from lack of accurate positioning of the guide during surgery.

The present study is not without limitations. The power of the study could have been increased by involving more patients and, therefore, more implants. However, if more implants were inserted by novice surgeons, it might add to their surgical skills and invite an intrasurgeon variability over time. The authors invited novice surgeons with no previous experience in implant insertion to mimic the clinical situation of inexperienced undergraduate students or postgraduate trainees at the beginning of their residency program. Future studies might investigate the accuracy of implant placement if a more universal surgical protocol such as a pilot drill partially guided protocol is followed by novice learners.

Learning the surgical placement of implants is a complex learning task that might impose different types of cognitive load on novice learners, leading to inefficient surgery. According to the cognitive load theory, there are three types of cognitive load, which are intrinsic, extraneous, and germane load. The intrinsic load results from the complexity of the learning task, which in the case of the present study is controlling the drilling speed, retraction of the oral structures, maintaining the mouth opening, regulating the amount of irrigation, holding the handpiece correctly, and drilling in a 3D space while preserving the adjacent vital structures and communicating with the patient. On the other side, the extraneous load refers to the cognitive load that is not necessary for the execution of the learning task. In implant surgery, such load could emerge from multiple sources such as operator stress, patient anxiety, a fatigued surgeon, and an inappropriate physical environment (eg, lighting, noise, number of observers in the operating room). Extraneous and/or intrinsic load should be kept to a minimum so that cognitive overload is prevented. In other words, the operator would have enough capacity in the working memory, known as germane load, to overcome the other two types of cognitive load, leading to efficient learning.

Generally, intrinsic load can be reduced by performing the simplest form of the whole task, then escalating toward a more complex variant of the same task. It was reported that the whole-task approach, where teaching progresses from offering relatively simple, but meaningful, authentic whole tasks to more complex tasks, advocates that performing the whole task is better than dividing it into small separate tasks. The authors of the present study believe that in the presence of an expert supervisor, using a teeth-supported surgical guide in a partially guided surgical protocol could achieve such a goal. It limits the free-hand surgery to the last drilling step, which combines the advantages of limiting major deviations from the proposed plan, especially in the buccolingual angular direction, and at the same time allows the learner to perform the whole task.

CONCLUSIONS

The level of surgeon experience affects the accuracy of implants placed using the teeth-supported surgical guide in a buccolingual direction; therefore, the use of computer-guided surgery via a partially guided protocol does not completely compensate for the level of operator experience. However, such a surgical guide might be used in a whole-task training of novice surgeons, as it can bridge a gap between simulation training in vitro and freehand surgery in a clinical setting.

ACKNOWLEDGMENTS

The authors reported no conflicts of interest related to this study.

REFERENCES

