Intrasinus Bone Gain with the Osteotome Sinus Floor Elevation Technique: A Review of the Literature

Marcello Santoro, DDS, PhD1/Roberto Pippi, MD, DDS2

Purpose: To evaluate the mean amount of intrasinus bone obtainable with the osteotome technique for transcrestal maxillary sinus elevation combined with simultaneous implant insertion, with and without the use of grafting materials. Materials and Methods: A review was conducted on PubMed, Scopus, and Cochrane central databases. Only human studies in which implant placement was contextual to the sinus elevation procedure, without additional crestal regenerative procedures and with a minimum 1-year follow-up, were selected. Seventeen studies were found to meet the selection criteria. Results: No statistically significant difference between the two procedures was detected. The mean intrasinus bone gain at 3 years after surgery was 2.99 mm in cases where no grafting material was used and 4.24 mm in cases in which grafting materials were used. The mean percentage of crestal height increase at the implant site at 3 years after surgery, referring to a selection of studies with initial bone height > 4 mm, was 47.28% in procedures without grafting material and 62.68% in procedures with grafting material. A different dimensional behavior of the newly formed bone during the first 3 years after surgery was found: a slight volumetric shrinkage in grafting procedures and a slight bone increase in procedures without grafting material. No statistically significant difference in implant survival rate was found. Conclusion: Both osteotome transcrestal sinus elevation procedures seem to guarantee predictable short- and medium-term results with reference to the intrasinus bone gain. However, the use of grafting materials, compared with their nonuse, does not seem to have substantial advantages in the short and medium term as far as mean intrasinus bone gain is concerned. Int J Oral Maxillofac Implants 2018;33:995–1002. doi: 10.11607/jomi.6334

Keywords: bone substitute, dental implant, maxillary sinus floor augmentation

The crestal osteotome technique was first introduced by Tatum1 and subsequently modified by Summers2,3 by elevation of the maxillary sinus floor through the alveolar ridge. It is one of the most commonly used procedures in implant practice since it allows increasing of insufficient residual bone height, which is necessary for a fixed rehabilitation on implants. This technique ensures high short- and long-term predictability of results, and it is considered less invasive, quicker, and cheaper than the lateral approach.4-6 Although this type of approach was first recommended in the case of residual ridges with a bone height ≥ 6 mm, it is also currently increasingly used in considerably resorbed jaws.7-11 However, the use of bone substitutes in such a procedure remains an open question and is still a subject of discussion. Actually, the literature provides scarce data on the extent of the expected mean intrasinus bone gain with and without bone substitutes, and data are lacking on the medium- to long-term stability of the outcomes of such procedures, all factors that may have considerable importance in the choice of the most appropriate procedure for a specific patient.12

The main aim of the present review was therefore to evaluate the mean amount of intrasinus bone obtainable with the osteotome technique for transcrestal maxillary sinus elevation combined with simultaneous implant insertion, with and without the use of bone substitutes.

MATERIALS AND METHODS

Internet-based research was conducted on PubMed, Scopus, and Cochrane central databases without any time limit until February 2017 only for articles published in English. The search included the following
keywords: osteotome and sinus lift, osteotome and sinus augmentation, osteotome and graft, crestal and sinus lift, crestal and sinus augmentation, crestal and sinus graft, crestal and membrane elevation, osteotome and sinus elevation, osteotome sinus floor elevation with graft, and osteotome sinus floor elevation without graft.

Research was conducted independently by both authors. For each keyword item, the abstract was viewed, and the articles that were considered relevant to the search criteria of this study were downloaded. Only studies that met the following criteria were selected:

- Maxillary sinus membrane elevation was performed with the crestal osteotome technique with or without application of grafting materials.² ³
- Additional procedures for vertical or horizontal crestal regeneration were not performed.
- Implant placement was contextual to the sinus elevation procedure.
- The study was carried out on humans.
- The implant prosthetic loading was performed within 6 months from implant placement.
- The minimum follow-up was at least 1 year from implant placement.

The following studies were excluded:

- Studies in which the sinus elevation was performed using a technique different from the crestal osteotome technique or in which the performed technique was not described in detail
- Studies in which more types of regenerative or bone substitute materials were used, without reporting clearly distinguishable results for each material
- Studies in which the crestal elevation of the maxillary sinus floor was contextual to post-extraction implants (immediate implants) or studies in which implant placement was delayed
- Studies on cadavers and animals
- Studies in which immediate loading prosthetic procedures were used
- Studies with less than 1-year follow-up
- Technical reports and case series

Out of the total selected studies, only those from which all the following data were retrievable were included in the present review:

- The number of implants
- Both mean and standard deviation of the residual bone height before the sinus elevation procedure and implant placement were performed
- The mean follow-up
- The type of bone substitute, if used

- Both mean and standard deviation of intrasinus bone gain, at least 1 year after the procedure
- The implant survival rate
- The mean time of submerged implant healing, before implant uncovering and prosthetic rehabilitation
- The radiographic method used for comparative evaluations between preoperative and postoperative conditions

In the selected studies, additional information was analyzed regarding:

- Both the mean and standard deviation of the crestal bone loss at different intervals from the first year of follow-up
- Incidence of maxillary sinus membrane perforation during surgery
- Any kind of antibiotic therapy possibly associated with the procedure
- Type and mean length of the implant used

A cross check was also performed on the references of the selected articles, and all missing studies that met the pre-set search criteria were added. No exclusion criteria were adopted regarding the type of study conducted, with the exception of technical reports and case series. No attempt was made to identify unpublished material or to contact the authors of the excluded studies to obtain more information or missing data. Multiple studies on the same cohort of patients with assessment of the same parameters at different time intervals were not excluded from the present review. However, the results of these studies were gathered and considered part of a single investigation.

For intrasinus bone gain assessment, a descriptive analysis of the collected data was first performed by subdividing all selected articles into two different groups: sinus elevation with and without grafting material. Only randomized controlled trials (RCTs) in which it was possible to collect data relating to the comparison of the two different techniques, that is, osteotome sinus elevation with or without grafting, were subsequently selected. The possible statistical difference between their results was verified through the continuous random effect model test. To this end, the variables of interest were selected so as to enable a comparative assessment at multiple time intervals. Further evaluation was performed, without applying any exclusion criteria regarding the type of study, by comparing the results of all studies in which the sinus elevation procedure was performed without grafting material with those of the studies in which grafting materials were used, all in relation to a specific follow-up time interval and by making a direct comparison of the mean value of interest.
of intrasinus bone gain and the standard error (SE) of the mean, by using the Welch t test. This double statistical evaluation was performed in order to identify any large discrepancies between the results of the analysis conducted on RCTs and those of the free analysis performed on retrospective studies, prospective studies, and RCTs, without considering the type of study.

RESULTS

Out of the 337 studies found through the electronic research, 46 studies were completely downloaded and only 17 studies were selected for the present review.10,11,13–27 Twenty-nine studies, however, were excluded since they did not meet the inclusion criteria of the present study.28–56 Data relating to each of the selected studies are summarized in Table 1.

The initial residual bone height (RBH) in the selected implant site was on average 5.73 mm (min = 2.6; max = 8.1; SE = 0.54) in procedures without grafting and 5.59 mm (min = 2.20; max = 8.20; SE = 1.10) for those with grafting. It was not possible to compare the incidence of sinus membrane perforation between procedures with and without grafting due to the frequent choice on behalf of the authors to stop the procedure or not to use any grafting materials in the case of evident perforation during surgery.

The mean follow-up and healing times before implant uncovering and prosthetic rehabilitation were 48.68 months (min = 12; max = 120; SE = 12.23) and 3.78 months (min = 2; max = 6; SE = 0.43), respectively, in procedures without grafting, and 37.12 months (min = 12; max = 60; SE = 7.62) and 3.53 months (min = 2; max = 6; SE = 1.24), respectively, in procedures with grafting.

Comparative evaluation of intrasinus bone gain between the two techniques (with and without grafting material) was possible only in relation to two time periods: 1 year and 3 years. No statistically significant difference between the two procedures was detected in relation to the crestal bone loss at 1 year (P = .98; 95% CI: –1.67 to –0.05; I2 = 0%); 3 years (P = .18; 95% CI: –1.51 to 0.20; I2 = 44%).

Data concerning the percentage change of intrasinus bone gain over time are summarized in Fig 1 and Table 2.11,13,16 Between the first and third year after surgery, sinus elevation procedures without grafting led only to positive dimensional variations and to a relative intrasinus bone gain greater than that of grafting procedures. The latter, in relation to the difference between the first and the last follow-up year, showed only negative percentage changes.

The mean percentage of crestal height increase at the implant site at 1 year after surgery was 74.35% (min = 46.30%; max = 150%; SE = 19.25) in procedures without grafting material10,11,16,17,24 and 117.57% (min = 49.23%; max = 227.27%; SE = 55.4) in procedures with grafting material,10,11,27 without any statistically significant difference (P = .45; 95% CI: –160.70 to 72.24).

The mean percentage of crestal height increase at the implant site at 3 years after surgery was 69.36% (min = 20.98%; max = 157.69%; SE = 23.40) in procedures without grafting material10,11,16,17,24 and 104.96% (min = 56.51%; max = 231.82%; SE = 42.35) in procedures with grafting material,10,11,27 without any statistically significant difference (P = .46; 95% CI: –130.86 to 59.66).

However, with a selection of only studies with initial RBH > 4 mm, the mean percentage crestal height increase at the implant site at 1 year was 51.12% (min = 46.30%; max = 53.57%; SE = 4.17) in procedures without grafting material10,11,16,17,24 and 62.73% (min = 49.23%; max = 76.23%; SE = 13.50) in procedures with grafting material,11,27 again without any statistically...
Table 1 Overall Features of Selected Studies

<table>
<thead>
<tr>
<th>Study type</th>
<th>Implant n, (patient, n)</th>
<th>RBH (mean)*</th>
<th>Follow-up</th>
<th>Graft</th>
<th>Intra-sinusual bone gain* (follow-up)</th>
<th>Crestal bone loss* (follow-up)</th>
<th>Implant survival rate</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nedir et al13-16</td>
<td>PS 25 (17)</td>
<td>5.4 ± 2.3</td>
<td>12 mo</td>
<td>36 mo</td>
<td>5 y</td>
<td>10 y</td>
<td>No</td>
</tr>
<tr>
<td>Nedir et al17</td>
<td>PS 54 (32)</td>
<td>3.8 ± 1.2</td>
<td>12 mo</td>
<td>No</td>
<td>2.6 ± 1.7</td>
<td>0.2 ± 0.8</td>
<td>100%</td>
</tr>
<tr>
<td>Brizzuela et al18</td>
<td>PS 36 (36)</td>
<td>7.4 ± 0.4</td>
<td>24 mo</td>
<td>No</td>
<td>1.8 ± 0.3</td>
<td>0.7 ± 0.1</td>
<td>91.6%</td>
</tr>
<tr>
<td>Pjetursson et al19</td>
<td>PS 164</td>
<td>8.1 ± 2.1</td>
<td>38.4 mo</td>
<td>No</td>
<td>1.7 ± 2</td>
<td>4.1 ± 2.4</td>
<td>79.4%</td>
</tr>
<tr>
<td>Nedir et al20,21</td>
<td>RCT 17</td>
<td>2.6 ± 0.9</td>
<td>12, 36, and 60 mo</td>
<td>Yes</td>
<td>3.9 ± 1 (1 y)</td>
<td>0.6 ± 0.8 (1 y)</td>
<td>94.1%</td>
</tr>
<tr>
<td>Zill et al22</td>
<td>RS 233 (113)</td>
<td>5.9 ± 1.7</td>
<td>5 y</td>
<td>No</td>
<td>4.5 ± 1.4</td>
<td>0.5 ± 0.8</td>
<td>93.8%</td>
</tr>
<tr>
<td>Si et al23</td>
<td>RS 96 (80)</td>
<td>6.75 ± 1.91</td>
<td>4 y to 9 y</td>
<td>No</td>
<td>2.95 ± 1.25 (4 y)</td>
<td>0.46 ± 0.88 (4 y)</td>
<td>90.6%</td>
</tr>
<tr>
<td>Fornell et al24</td>
<td>PS 21 (14)</td>
<td>5.6 ± 2.1</td>
<td>1 y</td>
<td>No</td>
<td>3 ± 2.1</td>
<td>Not comparable, flapless</td>
<td>100%</td>
</tr>
<tr>
<td>Volpe et al25</td>
<td>RS 29 (20)</td>
<td>7.2 ± 1.5</td>
<td>16.4 mo</td>
<td>No</td>
<td>2.8 ± 1.1</td>
<td>0.7 ± 0.3</td>
<td>100%</td>
</tr>
<tr>
<td>Chen et al26</td>
<td>RS 40 (37)</td>
<td>8.2 ± 1.7</td>
<td>39.2 mo</td>
<td>Yes</td>
<td>4.6 ± 1.9</td>
<td>–</td>
<td>100%</td>
</tr>
<tr>
<td>Diss et al27</td>
<td>PS 35 (20)</td>
<td>6.5 ± 1.7</td>
<td>12 mo</td>
<td>Yes</td>
<td>3.2 ± 1.5</td>
<td>–</td>
<td>97.1%</td>
</tr>
<tr>
<td>Si et al28</td>
<td>RCT 21 (21)</td>
<td>4.67 ± 1.18</td>
<td>36 mo</td>
<td>Yes</td>
<td>5.66 ± 0.99 (6 mo)</td>
<td>0.21 ± 0.23 (6 mo)</td>
<td>95.2%</td>
</tr>
<tr>
<td>Si et al29</td>
<td>RCT 20 (20)</td>
<td>4.58 ± 1.47</td>
<td>No</td>
<td>Yes</td>
<td>5.66 ± 1.82 (1 y)</td>
<td>0.44 ± 0.16 (1 y)</td>
<td>95.2%</td>
</tr>
</tbody>
</table>

CBCT = cone beam computed tomography; mo = months; OPG = ortopantomography; P = periapical; PS = prospective study; RBH = residual bone height; RS = retrospective study; y = years; *in mm.

Fig 1 Intrasinus bone gain changes over time.

significant difference (P = .41; 95% CI: −39.83 to 16.61). The mean percentage of crestal height increase at the implant site at 3 years after surgery was 47.28% (min = 20.98%; max = 67.03%; SE = 9.99) in procedures without grafting material11,16,19 and 62.68% (min = 56.51%; max = 67.88%; SE = 6.01) in procedures with grafting material11,19,26 without any statistically significant difference (P = .18; 95% CI: −38.31 to 7.51).

Four out of five studies10,11,16,23 (80%) involving procedures without grafting had a 2- to 3-mm mean intrasinus bone gain at 3 years after surgery, and three studies10,11,16 (60%) showed a bone gain ≥ 3 mm. However, all four studies10,11,19,26 with grafting material (100%) found a > 3 mm bone gain.

As far as implant survival rate is concerned, out of the total number of selected studies, only two RCTs10,11 with an initial mean crestal height < 5 mm, allowed the comparison of the results of both techniques (with and without grafting). Although the study of Nedir et al10 was characterized by an overall follow-up longer than that of Si et al11 (5 and 3 years, respectively), no statistically significant difference in implant survival rate was found between the
sinus elevation procedures with and without grafting ($P = .75$; 95% CI: 0.13 to 4.35; $I^2 = 0\%$).

DISCUSSION

The present review is the first in the literature that primarily analyzes, in the short and medium term, the amount of intrasinus bone gain after sinus elevation by means of the transcrestal osteotome technique, with and without grafting materials, with contextual implant placement.

The need of bone substitutes in osteotome elevation of the maxillary sinus floor is still debated.

The new bone formation mechanism in cases in which any regenerative material is applied still
remains partially known and may be largely due to the sinus membrane osteoinductive action on the clot formed in the space created by the sinus membrane elevation.57–60

Several studies, however, suggest that the use of bone substitutes may play a prominent role in intrasinus bone gain promotion, acting as a scaffold and/or as a space maintainer, which prevents collapsing of the sinus membrane.4,61,62 However, animal studies did not show histologic advantages in relation to intrasinus bone gain using bone substitutes during the sinus elevation procedure.63

The type of implant surface and the degree of implant penetration into the maxillary sinus, above the RBH, could influence the study results. Actually, a specific type of implant surface may be more advantageous in promoting bone neo-apposition than another surface. Furthermore, the amount of space created beneath the sinus membrane by the implant could affect the amount of new bone formation.11,63

In addition, most of the available investigations are based on a two-dimensional radiographic comparison of intrasinus bone changes, and the reported follow-up appears to be often too short to perform long-term evaluations.

Furthermore, based on the currently available data, it is not possible to evaluate whether the intrasinus bone gain varies between single, double, or multiple adjacent sinus elevation procedures, or between intermediate and non-intermediate implants inserted with the osteotome technique. It is also impossible to evaluate if the type of final implant rehabilitation (single vs full-arch rehabilitation) could influence both the amount and the long-term stability of the intrasinus bone gain. Therefore, RCTs should be performed to assess whether all these parameters may influence short- to long-term intrasinus bone gain.

Based on the results of the present analysis, intrasinus bone gain is on average 1 mm greater in procedures with grafting compared to those without grafting, although there is no statistically significant difference both at 1 and 3 years. Actually, the mean intrasinus bone gain at 1 year after surgery is 2.89 mm in cases without grafting material, whereas it is 3.92 mm in cases with grafting. At 3 years, the mean intrasinus bone gain is 2.99 mm in cases without grafting material, whereas it is 4.24 mm in cases with grafting.

In the case of a RBH > 4 mm, after 3 years, a 47.28% mean bone intrasinus gain can be expected compared with initial bone height in procedures without grafting, and a 62.68% mean bone intrasinus gain in procedures with grafting. Although these results are not statistically significant, they may be useful in selecting the most appropriate implant length for the initial available crestal height. Actually, on the basis of a 2- to 3-mm expected bone gain in the presence of a 4- to 5-mm RBH, an 8-mm-length implant could represent the most reasonable choice, whereas in the presence of a 6- to 7-mm RBH, a 10- or 12-mm-length implant could also be used.12,38,40

After 3 years, the mean intrasinus bone gain is > 2 mm in approximately 80% of the procedures without grafting and in almost 100% of the procedures with grafting, although these results resemble those of Nedir et al,21 who found an intrasinus bone gain > 2 mm in 93.8% of the procedures without grafting and in 100% of those with grafting. However, they are in contrast with those of Pjetursson et al,19 who found 2 or more mm of new bone in only 39.1% of procedures without grafting and in only 77.9% of those with grafting.

These differences can be explained considering that the results of the present analysis arise from a comparison of mean values of intrasinus bone gain reported by the selected studies. Out of five studies,10,11,16,19,23 only that of Pjetursson et al19 showed a mean intrasinus bone gain < 2 mm in procedures without grafting (1.7 mm), which is much lower than the mean of the other analyzed studies.

The present analysis also identified a different dimensional behavior of the newly formed bone during the first 3 years after surgery in procedures with and without grafting. Actually, a slight volumetric shrinkage of the grafting material always occurred between the postsurgical first and third year in grafting procedures, while a slight bone increase occurred in the same time interval in procedures without grafting material, the latter possibly due to the progressive increase of bone tissue radiopacity during its maturation. In fact, in sinus elevation procedures without grafting, only positive dimensional variations were recorded with a relative intrasinus bone gain greater than that obtained by the procedures with grafting material. In the latter, on the contrary, only negative percentage changes were recorded between the first and the last follow-up visit. These conclusions, however, arise from a rather small number of studies due to the very low availability of studies with longer follow-up periods. In 2016, Nedir et al16 analyzed 25 sinus elevation procedures without grafting and recorded a 20% intrasinus bone gain between the first and 10th follow-up year. Similarly, Si et al23 reported a 25.31% increase in procedures without grafting and a 10.96% decrease in procedures with grafting between the first and fifth follow-up year. In a more recent RCT on significantly atrophic ridges, Nedir et al10 recorded a dimensional 4% and 2.5% decrease, respectively, in procedures with and without grafting between the first and fifth follow-up year.

Although the main aim of the present study was not to compare the survival rate of implant procedures with and without grafting, the results seem to agree
with the findings of the most recent reviews on this issue, since no statistically significant difference between the two techniques has been recorded, thus inferring a rather similar predictability rate in the short term.⁶,⁶⁴

Out of the selected studies, only two RCTs¹⁰,¹¹ with an initial mean crestal height < 5 mm allowed a comparison between the results of the two techniques, without any statistically significant difference, also showing high implant survival rates up to 3 years after surgery (90.0% to 94.1% and 95.0% to 95.2%, respectively).

These results seem to support those of other studies and those of a recent meta-regression analysis,⁴⁵,⁶⁵–⁶⁷ suggesting that the residual crestal height cannot decisively influence the short- and medium-term implant success, although other authors propose the use of the sinus elevation osteotome technique in cases with at least 6-mm RBH.⁷–⁹ However, the presence of a very small number of RCTs, their rather short follow-up, and often the lack of local bone density assessment, prevent pronounced/definite conclusions on the long-term implant success of the osteotome technique applied to greatly atrophic residual ridges.

CONCLUSIONS

The results of this study must be interpreted with great caution, due to the availability of an extremely limited number of RCTs that meet the predetermined/pre-established inclusion criteria and, consequently, due to the necessity to include prospective and retrospective studies, thus altering the level of evidence. Moreover, follow-up periods were, for the most part, unsatisfactory for a long-term evaluation of results. Both osteotome transcresal sinus elevation procedures, with and without grafting, seem to guarantee predictable short- and medium-term results with reference to the intrasinus bone gain. The use of grafting materials seems to allow approximately 1 mm more bone gain than procedures without grafting, and > 4 mm in the case of RBH. In procedures without bone grafting, a mean 47.28% bone intrasinus increase at 3 years can be expected compared with initial bone height, and a mean 62.68% bone increase in procedures with grafting, without statistically significant differences between the two techniques. Therefore, the use of grafting materials in the sinus elevation osteotome technique, compared with their nonuse, does not seem to have substantial advantages in the short and medium term as far as mean intrasinus bone gain is concerned.

ACKNOWLEDGMENTS

The authors reported no conflicts of interest related to this study.

REFERENCES

