The Effect of Systemically Administered Bisphosphonates on Bony Healing After Tooth Extraction and Osseointegration of Dental Implants in the Rabbit Maxilla

InSoo Kim, DDS, MSD, PhD¹/HyungChun Ki, DDS, MSD²/Won Lee, DDS, MSD, PhD³/Heesung Kim, BA, MA, PhD⁴/Jun-Beom Park, DDS, MSD, PhD⁵

Purpose: To evaluate the effects of bisphosphonates on bone healing after tooth extraction and osseointegration of dental implants in a rabbit model. **Materials and Methods:** Twenty-four rabbits were divided into four groups; one control and three experimental. The experimental were treated with intravenous zoledronic acid (ZA, 0.1 mg/kg) twice per week starting 4 (Z4 group) and 8 (Z8 group) weeks before surgery until the end of the experiments. The experimental ZD4 group was treated with intravenous ZA (0.01 mg/kg) and intramuscular dexamethasone (1 mg/kg) twice per week starting 4 weeks before surgery until the end of the experiments. The maxillary first premolar was extracted, and an implant with a diameter of 1.5 mm was placed between the incisor and the premolar of each maxilla. Healing of the extraction socket was evaluated and histomorphometric analysis around the implant was performed, using the bone-to-implant contact ratio (BIC) and bone area ratio (BA) 4 and 8 weeks after the surgery. **Results:** The control group underwent a normal healing process, but all experimental groups showed necrotic bone with hollow lacunae. BIC and BA in the control group increased from the 4- to 8-week evaluations, but decreased in the experimental groups from 4 to 8 weeks. BIC and BA of the Z8 and ZD4 groups were higher than those of the control group at the 4-week evaluation, but were lower than the control at the 8-week evaluation. **Conclusions:** This study showed that administration of bisphosphonates interferes with normal bone remodeling after tooth extraction. The experimental groups showed good initial stability, but long-term healing around the implants was impaired. Within the limits of this study, it may be suggested that patients taking bisphosphonates should be treated with caution when performing tooth extraction or placing dental implants. Int J Oral Maxillofac Implants 2013; 28:1194–1200. doi: 10.11607/jomi.2685

Key words: bisphosphonates, bisphosphonate-related osteonecrosis of the jaws (BRONJ), dental implant, initial stability, tooth extraction, wound healing

Bisphosphonate-related osteonecrosis of the jaws (BRONJ) has generated great interest in the study of both dental and bone biology in recent years.¹ Bisphosphonate (BP) is a strong suppressor of osteoclasts, and it is commonly used to treat diseases that affect bone metabolism including multiple myeloma, secondary hypercalcemia caused by malignant tumors, bone metastasis in metastatic prostate cancer or metastatic breast cancer, and Paget’s disease.² Highly efficient intravenous BPs have extended their use from treatment of malignant bone diseases to prevention of osteoporosis.³⁻⁵ The Food and Drug Administration (FDA)
recently approved the annual injection of zoledronic acid (Reclast, Novartis) for the prevent of osteoporosis in menopausal populations. Earlier reports in the dental field suggested that the use of BPs may be beneficial in dental implantation and bone transplantation due to their strong inhibitory effects on bone resorption. However, later reports showed that BPs caused side effects such as acute reactions, gastrointestinal disturbances, and renal disorders. Moreover, osteonecrosis of the jaws is one of the most severe adverse effects, and BRONJ was first reported in 2003. Since then, a number of case reports and studies on BRONJ has been published, and the American Association of Oral and Maxillofacial Surgeons defined BRONJ as exposed, necrotic bone in the maxillofacial region that has persisted for more than 8 weeks with no history of radiation therapy to the jaws and with current or previous BP treatment. The number of dental patients undergoing long-term administration of BPs is increasing, and the incidence of osteonecrosis of the jaws is increasing accordingly. However, the pathogenesis of BRONJ has not been clearly established, although various hypotheses have been suggested. The most supported is that BPs suppress the remodeling of jaw bones, which may lead to necrosis. A direct cytotoxic effect of BPs on osteocytes, anti-angiogenic effects, and infection have also been proposed as causes of BRONJ. Diabetes, smoking, dental extraction, and concurrent medications have been thought to be indirectly associated with BRONJ by affecting remodeling, angiogenesis and infection.

A highly efficient BP was recently approved, and the use of this drug is gradually increasing as society is aging. Therefore, it is necessary to completely understand and identify the pathogenesis of osteonecrosis of the jaws with long-term use of BPs after tooth extraction and dental implant installation. This study was performed to evaluate the impact of BPs on bone healing after tooth extraction and osseointegration of dental implants by administration of zoledronic acid (ZA) along with dexamethasone (DX). DX was used simultaneously in some of the experimental groups to induce the best resemblance of BRONJ.

MATERIALS AND METHODS

Twenty-four female New Zealand white rabbits weighing 2.5 to 3.0 kg were used for the experiments. They were bred under the same conditions in accordance with the regulations of the Clinical Research Institute of Uijeongbu St Mary’s Hospital Catholic University of Korea (Gyeonggi-do, Korea). All animal experiments were performed in strict accordance with a protocol approved by the Ethics Committee for Animal Experiments of Uijeongbu St Mary’s Hospital Catholic University of Korea (no. UJA2010-04A).

The BP used in this study was ZA (Zometa, Novartis) and DX was purchased from Sigma-Aldrich. The implants used in this study had a diameter of 1.8 mm and length of 8.5 mm (C-Implant, Cimplant) (Fig 1). The implant had a sand-blasted, acid-etched (SLA) surface, and 2 mm of the transgingival part had a smooth surface.

Surgical Procedures

Twenty-four rabbits were divided into four groups: one control and three experimental groups. The experimental Z4 group was treated with intravenous administration of ZA (0.1 mg/kg) using the rostral auricular vein twice a week starting 4 weeks before surgery until the end of the experiments. The experimental Z8 group was treated with intravenous administration of ZA (0.1 mg/kg) from 8 weeks before surgery to the end of the experiments. The experimental ZD4 group was treated with intravenous administration of ZA (0.1 mg/kg) and intramuscular administration of DX (1 mg/kg) from 4 weeks before surgery to the end of the study.

General anesthesia was induced by administering a mixture of tiletamine/zolazepam (15 mg/kg) (Zoletil 50, Virbac) and Xylazine (5 mg/kg) (Xylazine 20 Inj, Kepro) into the femoral muscle. Lidocaine (2%) with 1:100,000 epinephrine (Yuhan) was used for local anesthesia. A crestal incision was made between the incisor and the premolar of the rabbit maxilla. A full-thickness flap was elevated to expose the alveolar bone. A hole was made in the implantation site using a guide drill with a diameter of 1.5 mm. The implant was inserted until the SLA surface was completely submerged in the alveolar bone. The flap was repositioned and sutured with 4-0 nylon around the smooth surface of the implant.

Fig 1. The implant used in this study (C-implant). It comprised two parts: a 6.5-mm SLA surface screw part and a 2-mm smooth-surfaced transgingival part. The diameter of the implant was 1.8 mm.
the implant. Extraction of the maxillary first premolar was performed immediately after implant placement (Fig 2). Gentamicin (4 mg/kg) (Kukje Pharm) and ketoprofen (1 mg/kg) (Bukwang Pharm) were administered intramuscularly twice per day for 2 days postoperatively. The animals were sacrificed at 4 or 8 weeks following surgery by intravenous administration of potassium chloride (Dai Han Pharm).

Preparation of Tissue Samples and Histologic Evaluation

The specimens retrieved from the extraction sockets were fixed in 10% neutral formalin solution for 7 days, decalcified with ethylenediaminetetraacetic acid for more than 3 months, and embedded in paraffin using a universal method. Hematoxylin-eosin staining was performed and examination was conducted using a microscope (IX71 Inverted Microscope, Olympus).

Histomorphometric Evaluation of Tissue Samples

Specimens retrieved from the implantation sites were fixed in 10% neutral buffered formalin fixative, and the non-decalcified samples were prepared according to a method reported previously. The dehydration process was carried out using an ethanol series, and the tissues were placed in embedding media (Technovit 7200 VLC; Kulzer). The embedded tissue block was dissected with a band saw (EXAKT) and polished by applying #800, #1200, #2500, and #4000 sandpaper. The thickness of the final samples was 40 to 50 µm. Evaluations were performed using a light microscope (BX51, Olympus) after hematoxylin-eosin staining. Briefly, the samples were washed with deionized water for 10 minutes. The specimen was stained with hematoxylin for 15 to 20 minutes and then washed with deionized water for 10 minutes. The samples were then stained with eosin for 3 minutes. The dehydration process was carried out using an ethanol series (three times in 95% ethanol and an additional three times in 100% ethanol). Samples were dried and mounted.

Digital images were obtained with a digital camera (SPOT RT3, Diagnostic Instruments). Histomorphometric analysis of the bone-to-implant contact (BIC) ratio and the bone area (BA) ratio between the first and the second threads was performed with an image analysis system (Kappa Image Base Noah 2.5; Kappa Optronics) (Figs 3 and 4). The BIC and BA were calculated as follows:

\[
\text{BIC} \% = \frac{\text{length of implant surface attached to the bone}}{\text{length of implant surface}} \times 100
\]

\[
\text{BA} \% = \frac{\text{bone area between first and second threads of the implant}}{\text{total area between first and second threads of the implant}} \times 100
\]

Statistical Methods

Data are presented as means ± standard deviations. The Mann-Whitney U test was used to test for differences with commercially available statistical software (SPSS version 12 for Windows, IBM). Statistically significant differences were evaluated with significance set at a value of \(P < .05\).

RESULTS

A total of 24 implantation sites and 24 extraction sockets from 24 female New Zealand white rabbits were used in this experiment. No exposed necrotic bone was observed in either the control group or the experimental groups.

The control group underwent a normal healing process (Figs 5 and 6). However, all experimental groups had bone with hollow lacunae (Figs 5d and 7).

BIC Results

The mean BIC value of the control group 4 weeks after implant installation was 36.75% ± 17.62% with a median of 38.28%. The BIC values of the Z4, Z8, and ZD4 groups were 17.69% ± 4.34% (median, 16.31%), 78.75% ± 10.20% (median, 82.58%), and 59.315 ± 12.41% (median, 60.80%), respectively (Fig 8). The BIC values of the Z8 and ZD4 groups were higher than those of the control group, but only the Z8 group showed a significant difference (\(P < .05\)).

The mean BIC of the control, Z4, Z8, and ZD4 groups at the 8-week evaluation were 61.44% ± 12.52% (median, 59.44%), 11.64% ± 1.10% (median, 12.11%), 10.20% ± 12.16% (median, 41.50%), and 27.33% ± 12.53% (median, 26.97%), respectively (Fig 8). All three experimental groups showed significantly lower BIC at 8 weeks compared with that of the control group. The BIC of the control group increased from the 4- to 8-week evaluations (\(P > .05\)). However, the BIC of the Z4, Z8, and ZD4 groups decreased from 4 to 8 weeks, and significant decreases were identified in the Z8 and ZD4 groups (\(P < .05\)).

BA Results

The mean BA value of the control group 4 weeks after implant installation was 30% ± 10.58% with a median of 25.54%. The BIC values of the Z4, Z8, and ZD4 groups were 50.17% ± 5.54% (median, 48.40%), 42.985 ± 8.44% (median, 40.04%), and 48.755 ± 8.45% (median, 50.60%), respectively (Fig 9). The mean BA values of the experimental groups (Z4, Z8, and ZD4) at 4 weeks were higher than those of the control group, but statistical significance was reached in only the Z4 group (\(P < .05\)).
Figs 2a and 2b (a) Maxilla of a New Zealand white rabbit and (b) surgical area. The black arrow indicates the extraction socket, and the yellow arrow indicates the implant.

Fig 3 Histologic view of dental implant. BIC and BA were evaluated between the first and second threads of the buccal and palatal sides (hematoxylin-eosin stain, original magnification ×12.5).

Figs 4a and 4b Histomorphometric analysis of (a) BIC ratios and (b) bone area ratios (BA) (hematoxylin-eosin stain, original magnification ×100).

Figs 5a to 5d Histologic images of extraction socket at 4-week evaluation in (a) control group, (b) Z4 group, (c) Z8 group, and (d) ZD4 group (hematoxylin-eosin stain, original magnification ×40).
The BA increased in the control group and decreased in the experimental groups from the 4- to 8-week evaluations ($P > .05$). The mean BA of the control, Z4, Z8, and ZD4 groups at the 8-week evaluation were 49.35% ± 23.20% (median, 38.06%), 48.80% ± 4.66% (median, 46.45%), 32.20% ± 4.34% (median, 32.28%), and 35.40% ± 23.86% (median, 23.41%), respectively (Fig 9). The mean BA values of the experimental groups at 8 weeks were lower than those of the control group, but statistical significance was not achieved ($P > .05$).

DISCUSSION

This study showed the effects of BPs on bone healing after tooth extraction and osseointegration of dental implants by the administration of ZA along with DX. In addition, this study established a rabbit model for BRONJ to evaluate the bony healing and osseointegration of dental implants using the maxilla.

Numerous animal experiments have been conducted to identify the pathogenesis of this disease, and various hypotheses have been suggested. Oral administration of alendronate (0.20 or 1.0 mg/kg per
day) resulted in matrix necrosis of the mandible in dog models.29 Administration of BPs to the subperiosteum of the alveolar bone prior to tooth extraction delayed initial healing of the extraction socket in rat models.30 Moreover, administration of zoledronate and pamidronate caused inflammatory and necrotic changes in both bone and soft tissue in rats.31 Likewise, the present study showed that administration of BPs produced hollow lacunae in necrotic bone, suggesting that BPs interfere with the normal bone healing process of the jaw bone after trauma such as tooth extraction.

Failure of osseointegration of an implant due to BRONJ was first reported in 1995.32 Implant failure due to BRONJ has been consistently reported since then. Bony defects around implants in the mandible were reported in a patient who was taking alendronate for 10 years prior to surgery.33 Delayed implant failure was reported in a patient who was taking alendronate for 6 years prior to implant installation.34 The present study showed that BIC and BA in the control group increased from the 4- to 8-week evaluations. However, BIC and BA of the Z8 and ZD4 groups decreased from 4 to 8 weeks. Interestingly, the BIC and BA of the Z8 and ZD4 groups at 4 weeks were higher than those of the control group. These results suggest that the use of BPs may have good initial stability with poor long-term results, which may be due to impaired remodeling procedures.

The frequency of BRONJ may vary depending on the administration route and the strength of drugs used.16,35–37 The American Association of Oral and Maxillofacial Surgeons reported that the prevalence of BRONJ was about 0.8% to 12% when BPs are administered intravenously.16 The prevalence is reportedly lower when BPs are administered orally.38,39 However, it was suggested that special attention should be paid when patients undergo BPs treatment for more than 3 years because the prevalence of BRONJ increases as the period of BPs treatment increases.16,38

Establishing animal models reportedly plays a key role in experiments related to this disease.40 One researcher generated a BRONJ model in mice by injecting ZA intravenously every week for 5 weeks,41 and other investigators used ZA along with DX to establish BRONJ models in mice.27 Rat models have been used to establish BRONJ models for studying changes in bone and soft tissue.31 In the present study, the authors used the rabbit maxilla to establish the disease model because the oral cavity of a mouse or rat may have limitations when performing tooth extraction or installation of dental implants. Although 8-week administration of ZA or 4-week treatment with ZA and DX did not produce exposed necrotic bone, the results clearly show that healing of the extraction socket and dental implant area was impaired. The results suggest that this model may be used to study BRONJ. Moreover, treatment with ZA for 8 weeks produced results similar to those obtained by administration of ZA and DX for 4 weeks, indicating that the disease model was produced within a shorter time by co-administration of DX.

CONCLUSIONS

This study showed that administration of BPs interferes with normal bone remodeling after tooth extraction. The use of BPs showed good initial stability at first but long-term healing around the implants was impaired. Within the limits of this study, it may be suggested that patients taking BPs should be treated with caution when performing tooth extractions or installing dental implants.
ACKNOWLEDGMENTS

The authors wish to thank Dr Sun-Sook Bae and Dr Pil-Woo Lee of the Department of Oral and Maxillofacial Surgery, Uijeongbu St Mary’s Hospital, College of Medicine, The Catholic University of Korea, Seoul, Korea. They also wish to acknowledge the financial support of the Catholic Medical Center Research Foundation in the program year of 2010 (5-2009-B0001-00109) and Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Education, Science and Technology (2011-0007682). The authors reported no conflicts of interest related to this study.

REFERENCES