Ernest Syndrome: A Systematic Review of the Literature

Aims: To conduct a systematic review of the available evidence regarding the clinical characteristics and treatment of Ernest syndrome. Methods: A systematic search was carried out in the EBSCOhost, Embase, MEDLINE, ScienceDirect, Scopus, Web of Science, and Trip databases. The free terms “stylomandibular ligament” and “Ernest syndrome” were used, and the Boolean operator “OR” was used for connection of the terms. The research protocol was registered in PROSPERO (CRD42018112914). The results of this study are presented according to the PRISMA statement, and risk of bias was assessed according to the Quality Assessment Tool for Quantitative Studies of the Effective Public Health Practice Project. Results: A total of 57 articles were found, 5 of which met the selection criteria and were included in this review. The selected articles represent a population of 81 patients with primarily unilateral pain in the periauricular and mandibular areas. Diagnosis was established according to clinical history, recognition of pain on palpation of the mandibular angle, and remission following infiltration with local anesthesia. Concerning the treatments applied, infiltration with corticosteroids was highly successful, as was partial resection of the stylomandibular ligament and part of the styloid process. Furthermore, in refractory cases, the application of radiofrequency thermoneurolysis was described. Conclusion: The analyzed studies allow a better understanding of Ernest syndrome and the proposal of a tendinosis model for this condition. However, the evidence is scarce, and it is therefore necessary to carry out additional studies with better methodologic designs. J Oral Facial Pain Headache 2020;34:167–173. doi: 10.11607/ofph.2551

Keywords: Ernest syndrome, inflammation, pain, stylomandibular ligament, temporomandibular disorders

The temporomandibular joint (TMJ) is a synovial joint. Its main components are the mandibular condylar process, temporal bone, and articular disc, which are surrounded by a joint capsule, synovial membrane, and ligaments. The ligaments are fibrous structures that allow the union of the joint surfaces and influence the joint dynamics. Some are capsular reinforcements while others are located a distance from the capsule; these are classified as main and accessory (extracapsular), respectively. It is believed that the ligaments correspond to tendons or muscles that originally were in relation to the joint but over time took new insertions or lost their function; however, the primitive tendon near the joint persisted and became a ligament. It is also suggested that the function of the ligaments is to stabilize the joint by limiting movements, thereby protecting the more sensitive structures and acting as a guide in some movements. Ligaments, however, are subject to adaptive processes, which may be progressive or regressive. This progressive adaptation allows the ligament to lengthen and shorten according to the direction of the load, but a regressive adaptation process will generate inflammation with an inherent risk of ossification or rupture.

The stylomandibular ligament (SL) is an accessory ligament of the TMJ with its origin in the styloid process near the apex and is inserted in the angle and posterior edge of the mandibular branch on its medial side.
The styloid process is a cylindrical bony projection of 2 to 3 cm in length with an oblique antero-inferior trajectory, where the insertions of the stylohyoid ligament and the stylopharyngeal, stylohyoid, and styloglossus muscles are located.7–10

There are different theories about the origin of the SL. Some authors postulate that the SL is a fibrous residue of a muscle bundle of the styloglossus muscle; another theory is that it is part of the cervical fascia or the deep fascia of the neck. In this scenario, the SL would present as a thickening of the parotid fascia or as an extension of the fascia of the medial pterygoid muscle, and this is part of the reason that the SL has been called a pseudo-ligament.3,11

There seems to be no consensus regarding the function of the SL—some authors state that it limits protrusive movement and prevents excessive cranial rotation of the jaw, while other researchers indicate that it lacks function in mandibular dynamics.12

Temporomandibular disorders (TMD) are a set of functional alterations that affect the masticatory system.13 Alterations in most of the components of the masticatory system are described among the different classifications of TMD; however, the involvement of the SL is rarely described.14,15

Ernest syndrome (ES) was first described in 1981 by Edwin A. Ernest and refers to inflammatory and painful irritation of the SL. Adequate descriptions of and information regarding the disease are scarce. Symptoms can manifest as pain in the angle of the jaw, radiate upwards toward the TMJ, and affect the ears and even the eyes. Symptoms are reproduced by palpation of the mandibular insertion of the SL.16,17

The aim of this study was to conduct a systematic review to answer the research question: What are the clinical characteristics and treatment of ES? The research protocol was registered in PROSPERO with the number CRD42018112914. The results of this study are presented according to the PRISMA statement (Preferred Reporting Items for Systematic Reviews and Meta-Analyses).18 This article does not contain any study carried out on human subjects by any of the authors.

Eligibility Criteria and Outcomes
A search was carried out for primary articles describing the clinical characteristics and/or treatment of ES in human populations. The inclusion criteria were: Primary articles that evaluated the clinical and/or therapeutic characteristics of ES and studies of descriptive design or clinical trials, without limits on language or year of publication. Letters to the editor, reviews, congresses, and scientific posters were excluded. The main outcome was the identification of clinical characteristics and treatment of patients with ES. Other outcomes of interest were scientific characteristics of the primary studies (language, year of publication, and design of the article) and clinical variables (age and sex of the patients, time until the diagnosis was made, characteristics of the pain, possible etiologic causes, diagnostic criteria, differential diagnoses, and comorbidities).

Databases and Search Strategy
EBSCOhost, Embase, MEDLINE, ScienceDirect, Scopus, and Web of Science databases were used, as well as the Trip Database search engine. In the initial phase, a cursory search of the literature was performed to identify search terms, resulting in the terms: "stylomandibular ligament" (free term) and "Ernest syndrome" (free term). Subsequently, a sensitive search was carried out that added the Boolean operator “OR” and the limit “primary articles.” The search was performed in January 2019 and was adapted to each database and its corresponding language. The MEDLINE search was ("stylomandibular ligament") OR "ernest syndrome". The search strategies for each database and search engine are detailed in Table 1.

Materials and Methods

Design and Protocol
A systematic review was carried out to answer the research question: What are the clinical characteristics and treatment of ES?
Study Selection, Data Extraction, and Risk of Bias Assessment

The articles were analyzed independently by two researchers (V.I.; S.W.). In case of conflict, a third reviewer (T.B.) was consulted. First, the authors evaluated the articles by title, then by abstract, and finally by full-text reading. A filter was applied to eliminate duplicate items. For this process, the Mendeley reference manager and the Covidence (Cochrane Collaboration) tool were used. The data were extracted manually in a Microsoft Excel spreadsheet for Mac (version 15.24, Microsoft), from which the subsequent analysis was carried out. The articles finally included were subjected to an evaluation of risk of bias according to the Quality Assessment Tool for Quantitative Studies of the Effective Public Health Practice Project (EPHPP), which has six components: selection bias, design, confounders, blinding, data collection methods, withdrawals, and dropouts. Each item was classified as having high, unclear, or low risk of bias, and a summary graph was made.

Results

Search Results

In the search, 151 articles were found, with a final total of 57 articles after eliminating duplicates. Of these articles, 10 met the selection criteria when reviewing the titles and abstracts. However, it was not possible to access 4 of the articles since the authors were unavailable for contact, and these were therefore excluded. Of the remaining 6 articles, 5 met the selection criteria after full-text reading and were finally included in the analysis.

Scientific Characteristics of the Primary Studies

The selected articles were written in English and Spanish and were all observational studies. The publications of Shankland (1987), Wilk (1994), and Peñarrocha-Oltra et al (2013) are case series, Sataloff and Price (1984) is a case report, and the Ernest article (1987) is a report of two cases.

Clinical Characteristics

A total sample of 81 patients was obtained, with an age range between 13 and 69 years. The distribution according to sex, age, time between onset of symptoms and time of diagnosis, pain characteristics, and clinical characteristics are detailed in Table 2.

Regarding the diagnostic method for ES, most of the articles used the following criteria: history of pain in the specific anatomical region; pain on palpation of the mandibular insertion of the SL; and pain relief following the use of local anesthesia in the SL insertion area. Peñarrocha-Oltra et al also considered the absence of significant alterations in extraoral panoramic radiography as a diagnostic criterion.

In the Shankland study, comorbidity was mentioned with pathologies such as myofascial pain (39.7% of patients), internal TMJ...
Likewise, Sataloff and Price suggest as differential diagnoses of ES—among a number of other pathologies—TMJ disorders, glossopharyngeal neuralgia, odontogenic pain, chronic tonsilitis, cervical arthritis, and spinal palatine ganglion neuralgia.

Regarding the etiology of ES, the studies reviewed suggest a prior event of various causes at the onset of symptoms. The majority of such events were related to trauma. Ernest describes the presence of an automobile accident as an etiologic factor in both reported cases. Shankland cataloged them as being of unknown etiology in 41.2% of cases, following a car accident in 32.4%, mandibular trauma in 16.2%, and associated with medical or dental iatrogenesis in 4% of patients. Peñarrocha-Oltra et al identified the onset of pain after episodes of forced mandibular opening due to endodontic dental procedures or tooth extraction in four of the six patients. Sataloff and Price described the onset of pain 15 months after mandibular osteotomy surgery due to dentoskeletal malocclusion. The probable causes are not described in the Wilk article.

The articles describe three therapeutic options that were applied following different protocols. These are peri-ligamentous infiltration with corticosteroids, application of radiofrequency thermoneurolysis, and division of the SL and part of the styloid process. The procedures and their results are described in Table 3.

Risk of Bias
The five selected studies presented a high risk of global bias. Figure 2 details the risk of bias according to author and item evaluated.

Discussion
ES, first described in 1981 by Edwin A. Ernest, is defined as inflammatory and painful irritation of the SL. This pathology is scarcely described, but is of significant interest in the diagnosis of orofacial pain, namely for its high comorbidity with other painful pathologies.

<table>
<thead>
<tr>
<th>Study (y)</th>
<th>Gender: no./age</th>
<th>Time to diagnosis</th>
<th>Pain characteristics</th>
<th>Clinical features</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sataloff and Price (1984)</td>
<td>F: 26 y</td>
<td>15 mo (after the initial surgery)</td>
<td>Retromandibular pain, sensitivity to deep palpation of the neck in the region of the styloid process and to palpation in the tonsillar fossa</td>
<td>Opening range decreased to 25% due to pain</td>
</tr>
<tr>
<td>Ernest (1987)</td>
<td>F: 29 y (A), 31 y (B)</td>
<td>A: 1 y B: 5 y</td>
<td>A: Chronic bilateral PA pain B: Nonspecific right hemifacial pain, greater severity in TMJ and PA; also at angle of the jaw, teeth, temporal, eye, and pharynx on the same side.</td>
<td>A: All mandibular ranges decreased and with pain according to the referred pain pattern of the ES B: Increased pain with pro-trusive movements and left laterality; pain with extension and left laterality of the head</td>
</tr>
<tr>
<td>Shankland (1987)</td>
<td>F: 56 patients; M: 12 patients/13 to 69 y</td>
<td>4.37 y (0.08–26 y)</td>
<td>Bilateral (42.65%), right (32.35%), left (25%). Location: PA (88.24%); TMJ and temporal (85.29%); mandibular and dental (73.53%); pharyngeal (58.82%); ocular (55.88%), other (38.23%).</td>
<td>All mandibular ranges decreased</td>
</tr>
<tr>
<td>Wilk (1994)</td>
<td>–</td>
<td>–</td>
<td>Pain in the auricular zone, TMJ, eye, zygomatic bone, posterior area of the jaw, molar teeth, and the neck in the area of the greater corner of the hyoid bone.</td>
<td>Traumatic injury precipitating factor in all patients</td>
</tr>
<tr>
<td>Peñarrocha-Oltra et al (2013)</td>
<td>F: 6 patients/35 to 51 y</td>
<td>23 mo (6 mo–4 y)</td>
<td>Unilateral, deaf, continuous, ill-defined, slow onset, not triggered by any stimulus. Located in PA region and mandibular angle.</td>
<td>Absence of teeth in 5 patients, pain in the masseter and pain in the masseter and medial pterygoid of the affected side in 2 cases; all with asymptomatic TMJ</td>
</tr>
</tbody>
</table>

F = female; M = male; PA = periauricular; ES = Ernest syndrome.

Disorders (38.24%), tendonitis of the temporal muscle tendon (16.2%), and occipital neuralgia (10.3%). Likewise, Sataloff and Price suggest as differential diagnoses of ES—among a number of other pathologies—TMJ disorders, glossopharyngeal neuralgia, odontogenic pain, chronic tonsilitis, cervical arthritis, and spinal palatine ganglion neuralgia.
From a physiopathologic point of view, it can be mentioned that Ernest describes it with the “insertion tendinosis” model. The process is similar to tendinitis/tendinosis of the temporal muscle tendon. This model proposes that when subjected to the functional or traumatic forces that generate a change in the direction of the ligament, it is the uncalcified cartilage that absorbs the tensile or compressive energy, depending on the direction of the force. This could explain why ES presents a high level of inflammatory pain even though the SL is a poorly perfused structure.

Clinically, ES is presented in two stages during its evolution. In the initial stage, infra-auricular and jaw tenderness are described near the mandibular angle. In a later stage, pain can be found in the TMJ, orbital and temporal areas, oropharynx, and coronoid process, as well as odontalgia in the posteroinferior teeth.

The studies analyzed in the present work confirm that other authors are in agreement with the progression and stages of the disease, which contributes to the data regarding its clinical overview. These data usually relate a history of painful trauma in the mandibular area, a greater predilection for being unilateral, and were found located in the periauricular area or angle of the jaw. Due to the high comorbidity with painful diseases, the authors of the studies analyzed agree that the fundamental diagnostic criterion is the reproduction of pain on palpation in the mandibular angle and the subsequent remission of symptoms with the infiltration of local anesthetic in the same area.

Table 3: Treatments Applied for the Management of Ernest Syndrome and Their Results

<table>
<thead>
<tr>
<th>Study (y)</th>
<th>Treatment</th>
<th>Results</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sataloff and Price (1984)</td>
<td>The stylomandibular ligament was sectioned, and 1 cm of the distal region of the styloid process was extracted.</td>
<td>Immediate improvement on the first postoperative day: Noticeable decrease in pain and normal jaw excursion. Follow-up at 18 months showed no recurrence of pain.</td>
</tr>
<tr>
<td>Ernest (1987)</td>
<td>A: Nonsurgical: Infiltration of 0.25 cc of cortisone in the SL insertion. B: Nonsurgical and surgical: Three sessions of cortisone infiltration with total but temporary remission of pain, which is why radiofrequency thermoneurolysis was performed.</td>
<td>A: After 3 years of control, the patient remains asymptomatic. B: Asymptomatic at 1 year of follow-up.</td>
</tr>
<tr>
<td>Shankland (1987)</td>
<td>Nonsurgical: Anesthetic block, injection of 1 cc of betamethasone sodium phosphate, and soft diet. Surgical: Radiofrequency thermoneurolysis under local anesthesia and guided with fluoroscopy.</td>
<td>Successful nonsurgical treatment in 77.94% of patients. Some cases received repeated treatment, up to 4 times at 2-week intervals. Surgical treatment was performed in 22.06% of patients. No information regarding follow-up.</td>
</tr>
<tr>
<td>Wilk (1994)</td>
<td>Surgical: Radiofrequency thermolysis in the temporal tendon under local anesthesia and guided with fluoroscopy.</td>
<td>100% effectiveness in patients at 18 months of follow-up (asymptomatic).</td>
</tr>
<tr>
<td>Peñarrocha-Oltra (2013)</td>
<td>Infiltration of 40 mg of triamcinolone acetonide in the SL insertion. Restoration of occlusion with prostheses (4 RPDs and 1 FP), mandibular rest, and soft diet for 15 days. In 2 cases of persistent symptomatology, the infiltration was repeated 15 days later.</td>
<td>Follow-up for 1 year. Four patients had complete pain remission, and two required a repeat procedure. At 1 year of follow-up, 100% had complete resolution of pain.</td>
</tr>
</tbody>
</table>

SL = stylomandibular ligament; RPD = removable partial denture; FP = fixed prosthesis.

Fig 2 Risk of bias summary according to the Quality Assessment Tool for Quantitative Studies of the Effective Public Health Practice Project (EPHPP). Red = high risk of bias; yellow ? = unclear risk of bias; green + = low risk of bias.
It is important to mention that both the clinical characteristics and physiopathologic processes can be described better under the tendinosis model—specifically as tendinosis of the SL—presenting an inflammatory, progressive, and intrinsic and/or extrinsic etiology that triggers pain and functional alterations. Nevertheless, no studies were found that assess the presence or absence of intrinsic factors that may be occurring in the pathology. When analyzing the symptomatology and high comorbidities of ES, it is important to rule out the presence of other orofacial pathologies that define the symptoms, as well as the need to consider these within the diagnostic criteria.

Eagle’s syndrome is a similar condition; however, its pathogenesis includes calcification processes, and there is no evidence that this phenomenon occurs in ES. This could be due to the overprojection of the possibly calcified area (area of SL insertion) with the body and branch of the jaw, which makes the analysis more complex in planar radiographs. There are reports of calcifications distal to the angle of the mandible, but Goldstein and Scopp (1973) clarify that these calcifications correspond more to Eagle’s syndrome than to ES. In relation to the above, Sataloff and Price mention that despite their recommendation to use radiography, a normal result should not rule out the existence of ES. The use of 3D imaging to eliminate the problem of overlap is not mentioned in the reviewed articles, and there are no reports on the use of advanced imaging techniques for the location of inflammatory changes, such as magnetic resonance imaging or computed tomography, which from a theoretical point of view seem to be useful forms of diagnostic approach.

Differential diagnosis for ES is complex. No pathognomonic factors of ES have been reported; however, when there is suspicion, a careful history, physical examination, radiographs, and, in selective cases, laboratory studies usually make the diagnosis relatively straightforward. In this context, it has been described that when this ligament is stretched more than 25 to 30 mm, it can cause cervical and pharyngeal pain, as well as pain when swallowing, speaking, and opening the mouth, with a sensation of a foreign body in the oropharynx and pain radiating to the ear.

It has also been suggested that prolonged dental treatments could cause elongation and distension of the SL, resulting in painful symptomatology, which was confirmed in Peñarrocha-Oltra et al. Shankland observed that more than 50% of examined patients reported a traumatic episode as a precipitating cause of their pain, as Ernest confirmed previously. Even Wilk observed that 100% of patients reported a traumatic incident of either an automobile accident involving a flexion-extension injury or a direct cranial impact preceding the onset of symptomatology. In addition, flexion-extension injuries such as those in whiplash are known to cause symptoms similar to those of ES.

With respect to treatment, there are three therapies mainly reported. The therapy most used in the evidence is the infiltration of corticosteroids from the area of the SL insertion. This treatment supports its theoretical validity in the resolution of the pathophysiologic inflammatory process generated by the tendinosis process. The infiltration is done before local anesthesia, and later palliative measures are established, such as the use of analgesics, anti-inflammatory drugs, local heat, and soft diet. The use of three substances is reported: Peñarrocha-Oltra et al used 40 mg of triamcinolone acetonide, Shankland utilized 1 cc of betamethasone sodium phosphate, and Ernest used 0.25 cc of synthetic cortisone. In the Peñarrocha-Oltra et al and Ernest protocols, a 100% improvement was achieved, and in the Shankland protocol, a 77.9% improvement was achieved. It is described that in cases where there is no response to the corticosteroid infiltration therapy, radiofrequency thermoneurolysis can be useful, generating a lesion that in turn causes a sensitive denervation of the area where the tendinosis is located. It is recommended that the procedure be performed with fluoroscopy to determine location of the needle, and total remission has been achieved with this technique. This procedure has traditionally been used to treat pain disorders of differing etiologies, primarily in the low back and cervical areas. Wilk described 100% effectiveness of therapy by radiofrequency thermolysis in patients with ES.

Surgery is a third option, and its success has been reported without recurrence of symptoms. In this procedure, division of the SL and 1-cm resection of the distal end of the styloid process are performed, and immediate improvement of the symptomatology and a recovery of the ranges of motion are reported.

Limitations
The limitations of the present study are mainly related to the scarce information on the subject and its low quality. Therefore, these results should be considered carefully. In addition, it was not possible to perform a meta-analysis due to the heterogeneity of the data found and the designs of the studies included.

Conclusions
ES has a poorly described pathology that corresponds to the tendonitis/tendinosis model, similar to that which occurs in tendonitis of the temporal muscle tendon. Clinically, it manifests as unilateral pain of slow onset that is dull, continuous, and poorly
defined. It can be located in the retromandibular, peri-auricular, TMJ, teeth, temporal, zygomatic bone, eye, and pharynx areas on the same side, with sensitivity to deep palpation of the neck in the region of the styloid process and tonsillar fossa. Therefore, in patients with these clinical manifestations, it should be considered that anesthetic block in the mandibular angle with subsequent remission of the symptomatology is currently the diagnostic criterion unanimously applied.

ES presents a high occurrence of comorbidity with other painful pathologies in the region; thus, differential diagnosis is fundamental. Regarding treatment, infiltration with peri-ligament corticosteroids seems to be a simple and uncomplicated procedure that may provide significant symptomatic relief. Although the studies analyzed allow for a better understanding of ES, the evidence available is scarce, heterogeneous, and of poor quality, so it is necessary to generate further information, specifically by improving sample sizes and the quality of the evidence.

Acknowledgments

This research was supported by CONICYT through the National Doctoral Fellowship (CONICYT, PFCHA/ Doctorado Nacional/2015-21151352). The authors wish to thank the Temporomandibular Disorders and Orofacial Pain Program from Universidad de La Frontera for the support in the translation of the article. The authors report no conflicts of interest.

References

Appendix I Excluded Articles