Bony Deviations Revealed by Cone Beam Computed Tomography of the Temporomandibular Joint in Subjects Without Ongoing Pain

Merete Bakke, DDS, PhD, Dr Odont
Associate Professor
Section of Oral Medicine (Clinical Oral Physiology)
Department of Odontology
Faculty of Health and Medical Sciences
University of Copenhagen
Copenhagen, Denmark

Arne Petersson, DDS, Odont Dr
Professor Emeritus
Section of Radiology
Department of Odontology
Faculty of Health and Medical Sciences
University of Copenhagen
Copenhagen, Denmark

Mie Wiese, DDS, PhD
Senior Clinical Instructor
Section of Radiology
Department of Odontology
Faculty of Health Medical Sciences
University of Copenhagen
Copenhagen, Denmark

Palle Svanholt, DDS
Consultant Orthodontist
Obstructive Sleep Apnoea Clinic
Section of Orthodontics
Department of Odontology
Faculty of Health and Medical Sciences
University of Copenhagen
Copenhagen, Denmark

Liselotte Sonnesen, DDS, PhD, Dr Odont
Associate Professor
Section of Orthodontics
Department of Odontology
Faculty of Health and Medical Sciences
University of Copenhagen
Copenhagen, Denmark

Correspondence to:
Dr Merete Bakke
Section of Oral Medicine (Clinical Oral Physiology)
Department of Odontology
Faculty of Health and Medical Sciences
University of Copenhagen
20 Nørre Allé
DK-2200, Copenhagen N
Denmark
Fax: +45-35-326-722
Email: mbak@sund.ku.dk
©2014 by Quintessence Publishing Co Inc.

Aims: To assess the prevalence of temporomandibular joint (TMJ) bony changes in cone beam computed tomography (CBCT) images of adult subjects without ongoing orofacial pain or complaints from the TMJ. Methods: The study included 84 TMJs from 28 men and 14 women (mean age [± SD]: 51 ± 11 years) without orofacial pain or TMJ complaints who were participants in a study of patients with obstructive sleep apnea. They were examined before any treatment with the Research Diagnostic Criteria for Temporomandibular Disorders and with CBCT (NewTom VGi; 15 × 15 cm, exposure time 18 seconds, axial thickness 0.3 mm). Osseous TMJ deviations were assessed blindly and classified. Results: Degenerative changes were noted in the CBCT images of 33 (39.3%) of the TMJs, of which 21 were classified as osteoarthritic alterations and 12 as indeterminate changes of osteoarthritis. Two TMJs were clinically classified as osteoarthrosis and 6 as disc displacement with reduction. The CBCT images of the 2 TMJs with a clinical diagnosis of osteoarthrosis showed also bony changes, but the CBCT images also revealed osteoarthritic bony changes in the 18 TMJs without any clinical diagnosis. Conclusion: CBCT images of asymptomatic adult TMJs commonly show degenerative bony alterations. Accordingly, such radiographic findings should be used with care and only as a supplement to clinical assessment. J Oral Facial Pain Headache 2014;28:331–337. doi: 10.11607/ofph.1255

Key words: cone beam computed tomography, imaging, Nordic Orofacial Test–Screening, osteoarthritis, osteoarthrosis, RDC/TMD, temporomandibular joint

Epidemiologic studies have shown that temporomandibular disorders (TMD) are present in about 10% of the adult population, and that about 3% have disorders of the temporomandibular joint (TMJ) that need treatment.1,2 Disc displacements with clicking or reduced jaw mobility are the most frequent TMD, while painful osteoarthritis is less frequent.

Ahmad et al have discussed the differences regarding the diagnostic terms of osteoarthritis and osteoarthrosis.3 In the Research Diagnostic Criteria for TMD (RDC/TMD), the definition of osteoarthritis involves the absence of pain and that of osteoarthrosis the presence of pain, but the radiologic findings are similar.4 Ahmad et al defined subcortical cysts, surface erosion, osteophytes, or generalized sclerosis as the diagnostic criteria for the radiographic diagnosis of osteoarthritis (Table 1), and they proposed to use the diagnostic term of osteoarthritis in the case of radiographic bony changes in the absence of clinical information.5 The same authors defined flattening of the articular surfaces and localized subcortical sclerosis as radiographic bony changes "indeterminate for osteoarthritis."

The bony changes are most commonly seen on the condyle but may also involve the mandibular fossa or tubercular eminence, and there is an increased likelihood of degenerative findings in radiographs of TMJs with coarse crepitus.5,6 The radiographic manifestations of osteoarthritis and inflammatory arthritis are similar, but the degree of joint destruction is typically more pronounced in inflammatory arthritis.

Cone beam computed tomography (CBCT) is becoming the modality of choice for the evaluation of the osseous components of the TMJ. Computed tomography (CT) has been proposed to be used in
the extent and progression of any bony changes.9 TMJ pain and capsular tenderness, and to confirm disorders are suspected, typically in patients with to evaluate the integrity of the bony structures when in all three planes with high resolution, minimal distortion, and great accuracy for detecting condylar cortical erosions.8 The goals of TMJ imaging by CBCT are to evaluate the integrity of the bony structures when disorders are suspected, typically in patients with TMJ pain and capsular tenderness, and to confirm the extent and progression of any bony changes.8 Imaging should therefore only be performed after a thorough history and clinical examination which indicate that more information is needed, or when specific documentation is relevant.

The RDC/TMD do not require imaging of the TMJ for joint diagnosis.4 The RDC/TMD Axis I diagnostic system has been employed internationally for many years. The diagnosis primarily has been based on clinical signs and symptoms.10 Only when accessible, imaging was recommended to help differentiate between the three disc displacement diagnoses in Group II and the diagnoses of arthralgia, osteoarthritis, and osteoarthrosis in Group III. However, no criteria for the interpretation of the images were specified, and it is only recently that radiologic criteria for the diagnosis of osteoarthritis by CT (Table 1) and disc displacement by magnetic resonance imaging have been developed.9 In addition, the radiologic findings of the TMJ do not always support the clinical RDC/TMD diagnosis.11

Like other radiographic techniques, CBCT lacks the ability to discriminate asymptomatic from symptomatic joints.11 Accordingly, poor correlations have been shown between pain and other clinical signs and symptoms of TMJ osteoarthritis and condylar bony changes in CBCT images.12 Indeed, in 11% of the patients with obstructive sleep apnea (OSA) and in 18% of control subjects, CBCT images showed incidental radiographic signs of degenerative joint disease or osteoarthritis of the TMJs.13 Also the progression and severity of osseous TMJ changes may increase with age and female gender.14,15 Thus, if bony changes are not primarily associated with TMD, it is important to know the prevalence of such alterations in a non-TMD population. Therefore, the aim of the present study was to assess the prevalence of TMJ bony changes in CBCT images of adult subjects without ongoing orofacial pain or TMJ complaints.

Materials and Methods

Participants
The study included data from 42 consecutive subjects (28 men and 14 women with a median age of 53 years; Table 2) remitted from ear, nose, and throat (ENT) specialists over a 9-month period for treatment with mandibular advancement oral appliances as part of a study on adult OSA at the Obstructive Sleep Apnea Clinic, Department of Odontology, University of Copenhagen. The investigation followed the guidelines of the Helsinki Declaration and was approved by the National Committee on Biomedical Research Ethics (Protocol H-3-2011.086). Informed consent was obtained from each subject.

None of the subjects included in the study had present pain or TMJ complaints. They were also without systemic inflammatory joint diseases or neuromuscular disorders, but more than half of them were treated with drugs for various medical conditions. As a mandibular advancement oral appliance for snoring and OSA may produce TMJ discomfort or pain, ongoing TMJ pain, TMJ complaints, and need of TMD treatment were exclusion criteria.16 Thus, the subjects were examined with respect to orofacial and TMJ function before inclusion in the study. The examination consisted of clinical and radiographic components. The clinical examination and CBCT radiographic evaluation were performed by separate investigators blinded to the findings of the other examination.

Clinical Examination
The Nordic Orofacial Test–Screening (NOT–S) was used to perform a comprehensive screening of orofacial dysfunction.17 It consisted of a structured interview and a clinical examination. The interview reflected six domains (sensory function, breathing, habits, chewing and swallowing, drooling, dryness of the mouth), and the examination included six domains (the face at rest, nose breathing, facial expression, masticatory muscle and jaw function, oral motor function, speech). One or more “yes” responses for impairment in one of the 12 domains scored 1 point, and the maximum score was 12 points.

Table 1 Assessment of the Osseous Components of the TMJ from Radiographs and Comprehensive Radiographic Diagnostic Criteria*

No osteoarthritis	Deformation due to subcortical cyst, surface erosion, osteophyte, or generalized sclerosis
Indeterminate osteoarthritis	Normal relative size of the condylar head; and Subcortical sclerosis with/without articular surface flattening; or Articular surface flattening with/without subcortical sclerosis; and No deformation due to subcortical cyst, surface erosion, osteophyte, or generalized sclerosis
Osteoarthritis	Normal relative size of the condylar head; and Subcortical sclerosis with/without articular surface flattening; or Articular surface flattening with/without subcortical sclerosis; and No deformation due to subcortical cyst, surface erosion, osteophyte, or generalized sclerosis

*After Ahmad et al.2
Potential TMJ conditions were classified according to the algorithms of the RDC/TMD Axis I (International RDC/TMD Consortium Network).4,9 TMJ tenderness and TMJ sounds were recorded according to the RDC/TMD protocol by two of the authors (MB and LS) who were calibrated from other studies (eg, Sonnesen et al18).

Radiologic Examination

The CBCT images were taken with the teeth in occlusion and in the standardized head posture as described by Siersbæk-Nielsen and Solow.19 The CBCT unit was a NewTom VGi (Quantitative Radiology). The exposure settings were as follows: standard scan mode with an imaging volume of 15 cm × 15 cm, exposure time of 18 seconds, and axial thickness of 0.3 mm. Reconstructions of the TMJs were made from the volumetric data by using the NewTom NNT software. Individual cross-sections were produced with sagittal sections perpendicular and coronal images parallel to the mediolateral long axis of the condyle. The section thickness was 2 to 3 mm for sagittal sections and 1 to 2 mm for coronal sections. The multiplanar reformatting function with a section thickness of 0.3 mm was used in cases of uncertain findings. The images were saved in the program.

Two of the authors (AP and MW) analyzed the images individually. The observers were calibrated from another study using cross-sectional tomography.6 The registrations of the two observers were compared, and in case of discrepancy the final diagnosis was reached by consensus and dubious findings were not reported. The observers were blinded to the clinical findings. According to Ahmad et al,3 hard tissue changes such as a deviation in the relative size of the condyle, articular surface flattening, localized subcortical sclerosis, subcortical cyst, surface erosion, osteophyte, and generalized sclerosis were assessed for condyle, fossa, and eminence, and the following diagnoses were allowed: no osteoarthritis/osteoarthrosis, indeterminate changes for osteoarthritis, and osteoarthritis (Table 1).

Statistical Analyses

The data were first analyzed with descriptive statistics (mean, median, standard deviation, and range). The association between the RDC/TMD diagnoses of osteoarthrosis and the presence of indeterminate osteoarthritic/osteoarthritic changes in the CBCT images were analyzed with chi-square tests. In addition, the association between age and bony changes and the RDC/TMD diagnoses of osteoarthrosis, respectively, was analyzed with Spearman rank order correlation (r_s). Statistical significance was accepted at $P < .05$, and all statistical analyses were calculated using Statistica, version 5.0 (StatSoft).

Results

Nearly all subjects reported dysfunction in the breathing domain of the NOT–S screening corresponding to their OSA condition (Fig 1); otherwise, the total scores of the NOT–S screening (Table 2) were within the normal reference values.17 The maximal jaw-opening capacity and the number of teeth (Table 2) also were within reference values.20

The clinical examination revealed that 8 subjects (19.0%) had a TMJ diagnosis according to the RDC/TMD: 2 joints (2.4%) in 2 subjects had osteoarthrosis (Group IIIc), and 6 joints (7.1%) in 6 subjects had disc displacement with reduction (Group IIa) (Table 3).

Radiologic bony changes were found in 33 (39.3%) joints (Table 4). The changes were not significantly associated with age (osteoarthritic alterations, $r_s = 0.13, P = .24$; all bony alterations, $r_s = 0.01, P = .89$). Flattening was present in 31.0% of the TMJs, and erosions and osteophytes in 14.3% and 16.7%, respectively (Table 4). The radiologic findings of the CBCT images according to Ahmad et al3 (Table 1) led
in 21 (25.0%) of the TMJs to the diagnosis of osteoarthritis of the TMJs (in 14 subjects), and in 12 (14.3%) to the diagnosis of indeterminate osteoarthritis (Table 4); 22 of the 42 subjects (52.4%) were without any osteoarthritic or indeterminate osteoarthritic alterations.

The number of TMJs showing osteoarthritic changes in the CBCT (21 TMJs, Table 4) was significantly larger than the number with osteoarthrosis (2 TMJs), based on RDC/TMD diagnoses ($P = .0001$). The two TMJs with the clinical diagnosis of osteoarthritis also showed osteoarthritic radiographic changes (osteoarthritic deviations, $r_s = 0.26$, $P = .02$; Table 5), but 18 TMJs with no RDC/TMD diagnosis had osteoarthritic changes in the CBCT images, similar to those seen in the radiographs of the two TMJs with osteoarthritis (see examples in Figs 2 and 3).
Discussion

As part of an OSA study, CBCT images from subjects without ongoing pain or other TMJ complaints were analyzed for radiographic bony changes. More men than women were included in the study, consistent with the sex distribution of patients with adult OSA. Except from the snoring subscale, the NOT–S scores of these OSA patients were within the reference values of healthy subjects.

The clinical examination led to only a few RDC/TMD diagnoses (2 osteoarthrosis and 6 disc displacements with reduction), and none of the patients was in need of TMD treatment, which was a criterion for exclusion. The low frequency of subjects with a clinical diagnosis of osteoarthrosis (RDC/TMD IIIc; 4.8%) corresponds well with that reported by epidemiologic studies. However, the number of radiologic bony changes was high. With only two clinical osteoarthrosis diagnoses, it was surprising to find 21 TMJs with osteoarthritic bony alterations in the CBCT images while 51 of the TMJs were without indeterminate osteoarthritic radiographic changes.

Observer variation is common in diagnostic radiology. Nevertheless, an excellent interexaminer reliability has been reported when using well-defined criteria in evaluating CT images of the TMJ for the radiologic diagnosis of osteoarthritis. The two observers in the present study were calibrated using cross-sectional tomographic images, which are similar to CBCT images. Like CBCT, tomography has a low sensitivity and a high specificity for detecting TMJ osseous changes. To reduce the number of false-positive findings, the two examiners of this study followed the rule not to report dubious findings.

Table 5 Relationship Between Clinical Diagnoses (RDC/TMD) and Radiographic Findings (CBCT) in TMJs of 42 Subjects Without Ongoing Orofacial Pain or TMJ Complaints

<table>
<thead>
<tr>
<th>RDC/TMD</th>
<th>Assessment of osseous radiographic alterations*</th>
</tr>
</thead>
<tbody>
<tr>
<td>None (51 TMJs)</td>
<td>None</td>
</tr>
<tr>
<td>Indeterminate of osteoarthritis (12 TMJs)</td>
<td>Indeterminate of osteoarthritis</td>
</tr>
<tr>
<td>Osteoarthritis (21 TMJs)</td>
<td>Osteoarthritis</td>
</tr>
<tr>
<td>Disc displacement with reduction, Group Ila (6 TMJs)</td>
<td>Disc displacement with reduction</td>
</tr>
<tr>
<td>Osteoarthrosis, Group IIIc (2 TMJs)</td>
<td>Osteoarthrosis</td>
</tr>
</tbody>
</table>

*After Ahmad et al (see Table 1).

Fig 2 CBCT images of a TMJ of a patient without a RDC/TMD diagnosis but with bony osteoarthritic changes (erosions and osteophyte). (a) Sagittal. (b) Coronal.

Fig 3 CBCT images of a TMJ of a patient with a RDC/TMD diagnosis of osteoarthrosis and with osteoarthritic changes (erosions and osteophyte). (a) Sagittal. (b) Coronal.
In the present study, the findings of subcortical cysts, surface erosion, osteophytes, or sclerosis were used as indicators for osteoarthritis, following the criteria for RDC/TMD, and 47.6% of the subjects had indeterminate osteoarthritic or osteoarthritic bony alterations. In another OSA investigation, 11% to 18% of the subjects had radiographic signs of degenerative joint disease or osteoarthritis of the TMJ as depicted by CBCT, and in line with the present findings, similar values (3% to 43%) for osteoarthritis radiologic changes were found in asymptomatic young adults with different types of skeletal malocclusion.

It may be questioned whether these radiographic findings are clinically relevant. In a study of asymptomatic persons without internal derangement, 35% of the TMJs showed flattening in the CT images. The authors concluded that minimal flattening is probably without clinical significance. This is in accordance with autopsy studies showing that deviations in form of the condyle are common also in the absence of osteoarthritis. The high frequencies of bony changes in the CBCT images of the pain-free subjects in the present study as well as in the study by Krisjane et al indicate that radiographic signs of osteoarthritis are a poor indicator of pain. The same conclusion was reached by Palconet et al, who correlated radiographic bony changes in CBCT images with TMJ pain. Similarly, radiographic signs of osteoarthritis are a poor indicator of the presence of knee pain or disability. Future research may change the radiologic indicators for osteoarthritis. With the high frequency of osteoarthritic bony changes in pain-free TMJs, there is a risk of overtreatment in patients with TMD if the findings of the radiographic examination are not used critically and are not related to the pain reports and clinical findings. Therefore, CBCT imaging should not be used in isolation as the main basis for diagnosis of TMJ conditions, but when indicated it may support the clinical diagnosis and choice of treatment.

The median age of the subjects in the present study was 53 years. With a range from 26 to 73 years, age-related changes of the bony structures might have been present, and with an age-dependent frequency increase. However, the results did not support this hypothesis. In the present study, the most frequent type of bony deviation was flattening, which is typical of remodeling processes. As CBCT imaging was performed before the treatment with the intraoral appliance, it is impossible that the flattening was caused by the appliance. Moreover, remodeling in CBCT images has been reported even in young asymptomatic subjects.

Conclusions

A considerable proportion (47.6%) of OSA patients without ongoing pain and TMJ complaints had bony deviations in CBCT images. These bony changes were not associated with the clinical diagnoses.

Acknowledgments

This report is part of a study on obstructive sleep apnea and was supported by a strategic funding from the Department of Odontology, Faculty of Health and Medical Sciences, University of Copenhagen, Denmark. The authors declare no potential conflicts of interests with respect to the authorship and/or publication of this article.

References

