Effect of Surface Modifications of Abutment Screws on Reverse Torque Values: An In Vitro Study

Emine Dilara Colpak, DDS, MSc
Department of Prosthodontics, Faculty of Dentistry, Alanya Alaaddin Keykubat University, Antalya, Turkey.

Hasan Onder Gumus, DDS, PhD
Department of Prosthodontics, Faculty of Dentistry, Erciyes University, Kayseri, Turkey.

Purpose: To investigate the reverse torque values of abutment screws subjected to various surface modifications. Materials and Methods: Sixty abutment screws were divided into two groups of 30 each: with thermomechanical cycling (240,000 cycles) and without thermomechanical cycling. Each group was then divided into three subgroups according to surface treatment: nontreated (NT, n = 10); anodic oxidation (AO, n = 10); and diamond-like carbon (DLC) coating (DLC, n = 10). All abutment screws were tightened to 30 Ncm using a digital torque meter. The reverse torque values of the abutment screws with and without thermomechanical cycling were then measured. The percentage of deviation (PERDEV) for reverse torque values was calculated. Two-way analysis of variance followed by Tukey Honest Significant Difference test were used for intergroup comparisons. Results: Significant differences were found among the PERDEV values of the groups based on thermomechanical cycling and surface treatment ($P < .001$ for each). A significant interaction was found between surface treatment and thermomechanical cycling ($P < .001$). Conclusion: Reverse torque values of abutment screws were found to be higher after surface treatments. The abutment screws with AO exhibited the lowest torque value loss in groups with and without thermomechanical cycling. Int J Prosthodont 2020;33:401–409. doi: 10.11607/ijp.6581
Fundamental Research

The International Journal of Prosthodontics

MATERIALS AND METHODS

This study was conducted in the Research Laboratory at Erciyes University Faculty of Dentistry and in the Erciyes University Technology Research and Application Center. This study included a total of 60 implants (4.1 mm × 10 mm, non–surface roughened, bone level; Bilimplant, Proimtech) and their straight abutments. The specimens were prepared with one implant each. The implants were embedded in autopolymerized acrylic resin (INTEGRA) (Fig 1). All of the abutment screws were Grade 5 titanium alloy and divided into two groups: screws with thermomechanical cycling and screws without thermomechanical cycling. Each group was further divided into three subgroups according to surface modification (Fig 2): nontreated (NT, n = 10); anodic oxidation (AO, n = 10); and DLC coated (DLC, n = 10).

Surface Modifications with Anodic Oxidation

Twenty abutment screws were subjected to the titanium AO process. This procedure begins with 10-second incubation in 35% phosphoric acid (Ultra-Etch, Ultradent) prepared by dilution at a ratio of 1:1 to remove undesirable contamination on the surface of the material. The abutment screws were rinsed with water, transferred to a system consisting of an anode, cathode, electrolyte, power supply, and mixer, and prepared for the oxidation process. The voltage was set to 27 V to obtain a blue color on the abutment screws. Total applied voltage time was 35 seconds.

Surface Modifications with DLC Coating

Twenty abutment screws were coated with DLC (Oerlikon Balzers). This surface coating provides excellent bacteria, leading to inflammation in the peri-implant soft tissues.9 Various solutions have been proposed to minimize these problems, such as changing the surface properties of the base screws using various materials, repeated tightening cycles after the first tightening, and increasing the torque value.10 The stability of the abutment screw depends on the preload. Preload is the initial load on the screw; the applied torque improves the force on the screw. The preload of the abutment-implant joint depends on the tightening torque, modulus of material elasticity, coefficient of friction on the contact surfaces, speed of tightening, lubrication, component fitness, and screw design parameters.11 Friction and preload are inversely correlated, as preload increases with decreasing friction.12 It has been reported that the coefficient of friction was a significant factor influencing the preload achieved at a given torque force.13 Therefore, implant screw manufacturers have used dry lubricants such as gold, diamond-like carbon (DLC), and nitride coating to reduce friction.14,15

The anodic oxidation (AO) process is used to overcome the weak tribologic properties of titanium, to increase the corrosion resistance, and to provide hard–and abrasion-resistant–surface modification to ensure longevity in use.16,17 However, the effects of anodizing vs coating the titanium components on their resistance to loosening have not been compared.

The present study aimed to examine and evaluate the effects of different surface modifications of abutment screws on reverse torque values after thermomechanical cycling.
The percentage of deviation (PERDEV) for reverse torque values was calculated using these values
\[
\text{PERDEV} = \frac{\text{absolute difference}}{\text{target torque}} \times 100
\]

The PERDEV values give the percentage of deviation from the targeted torque value to determine the amount of torque loss. When the reverse torque value decreases, the PERDEV value increases.

Analysis with Scanning Electron Microscopy

Screws were analyzed with scanning electron microscopy (SEM) (GeminiSEM 500, Zeiss) to investigate the surface morphology of the screws, to evaluate the deformations that may occur in the screw grooves after dynamic fatigue, and to investigate the surface properties.
Table 1 Descriptive Statistics and Two-Way ANOVA Test for Percentage of Deviation Values of Each Experimental Group

<table>
<thead>
<tr>
<th>Surface treatment</th>
<th>Thermomechanical cycling</th>
<th>Min–max</th>
<th>Mean ± SD</th>
<th>F value</th>
<th>P<sup>a</sup></th>
</tr>
</thead>
<tbody>
<tr>
<td>NT</td>
<td>Yes</td>
<td>21.67–57.67</td>
<td>44.74 ± 12.43</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>No</td>
<td>8.67–19.33</td>
<td>12.4 ± 3.15</td>
<td></td>
<td></td>
</tr>
<tr>
<td>AO</td>
<td>Yes</td>
<td>6.67–20.00</td>
<td>13.81 ± 4.15</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>No</td>
<td>6.67–14.33</td>
<td>11.03 ± 2.95</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>No</td>
<td>12.33–22.33</td>
<td>17.13 ± 3.76</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Main effects

<table>
<thead>
<tr>
<th></th>
<th></th>
<th>30.90</th>
<th>< .001</th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Surface treatment</td>
<td></td>
<td>71.72</td>
<td>< .001</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Thermomechanical</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>cycling</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Interaction

| Surface treatment*thermomechanical cycling | 29.87 | < .001 |

ANOVA = analysis of variance; NT = nontreated, AO = anodic oxidation; DLC = diamond-like carbon coating.

Table 2 Tukey Post Hoc Test for Multiple Comparisons

<table>
<thead>
<tr>
<th>Thermomechanical cycling</th>
<th>PERDEV</th>
<th>Mean difference</th>
<th>P</th>
</tr>
</thead>
<tbody>
<tr>
<td>NT: 44.74 ± 12.43</td>
<td>AO: 13.81 ± 4.15</td>
<td>30.926 < .001</td>
<td></td>
</tr>
<tr>
<td>NT: 44.74 ± 12.43</td>
<td>DLC: 24.62 ± 7.12</td>
<td>20.112 < .001</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Non–thermomechanical cycling</th>
<th>PERDEV</th>
<th>Mean difference</th>
<th>P</th>
</tr>
</thead>
<tbody>
<tr>
<td>NT: 12.4 ± 3.15</td>
<td>AO: 11.03 ± 2.55</td>
<td>1.367 .61</td>
<td></td>
</tr>
<tr>
<td>NT: 12.4 ± 3.15</td>
<td>DLC: 17.13 ± 3.76</td>
<td>–4.733 .007</td>
<td></td>
</tr>
<tr>
<td>AO: 11.03 ± 2.55</td>
<td>DLC: 17.13 ± 3.76</td>
<td>–6.100 .001</td>
<td></td>
</tr>
</tbody>
</table>

Percentage of deviation (PERDEV) values are reported as mean ± standard deviation. NT = nontreated; AO = anodic oxidation; DLC = diamond-like carbon coating.

The reverse torque values were normally distributed (P > .05). The PERDEV values increased for all three subgroups after thermomechanical loading (Table 1). Significant differences were found between various surface treatments and for thermomechanical cycling in terms of the PERDEV values (P < .001 for each). There was also a significant interaction between surface treatment and thermomechanical cycling (P < .001).

Significant differences regarding PERDEV values were found among the different surface treatments in the thermomechanical cycling group (P < .001, P < .001, and P = .024) (Table 2). The PERDEV values of the NT group were significantly higher than those of the AO and DLC groups, and the PERDEV values in the DLC group were higher than those in the AO group. In the non–thermomechanical cycling
magnification after thermomechanical cycling (Fig 7). In the NT and AO groups, the coating was not observed on the amorphous surface. In the DLC group, the coating could be observed clearly. The average coating thickness was 3 mm (Figs 8 and 9).

DISCUSSION

This study evaluated the effects of various surface modifications with and without thermomechanical cycling on abutment screws for single-tooth implants. The effects on reverse torque values were investigated.

The external forces, vibration in the screw, wear of the joint surfaces, and forces resulting from the seating (embedment relaxation) gradually reduce

![Fig 6](image) SEM images of abutment screws in the non–thermomechanical cycling group. (a) Nontreated. (b) Anodic oxidation. (c) Diamond-like carbon coating.

![Fig 7](image) SEM images of abutment screws in the thermomechanical cycling group. (a) Nontreated. (b) Anodic oxidation. (c) Diamond-like carbon coating.

<table>
<thead>
<tr>
<th>Surface Treatment</th>
<th>Thermomechanical Cycling</th>
<th>Non–thermomechanical Cycling</th>
<th>Mean Difference</th>
<th>P</th>
</tr>
</thead>
<tbody>
<tr>
<td>NT</td>
<td>44.74 ± 12.43</td>
<td>12.4 ± 3.15</td>
<td>32.341</td>
<td>< .001</td>
</tr>
<tr>
<td>AO</td>
<td>13.81 ± 4.15</td>
<td>11.03 ± 2.55</td>
<td>2.781</td>
<td>.88</td>
</tr>
<tr>
<td>DLC</td>
<td>24.62 ± 7.12</td>
<td>17.13 ± 3.76</td>
<td>7.495</td>
<td>.009</td>
</tr>
</tbody>
</table>

Percentage of deviation (PERDEV) values are reported as mean ± standard deviation. NT = nontreated; AO = anodic oxidation; DLC = diamond-like carbon coating.
Screw loosening takes place if the force applied to the system is higher than the preload. The elastic recovery of the screw then pulls the components together, resulting in a clamping effect. The screw will loosen or fracture if external separating forces acting on the implant-abutment joint are greater than the clamping forces keeping the abutment and the implant together. Studies have reported that the preload depends on the coefficient of friction between the contacting surfaces. This coefficient depends on the roughness of the contacting surfaces, loading, hardness of the threads, and the presence, quantity, and quality of the lubricant on the surfaces. When decreased to appropriate values, the friction coefficient increases the preload and reduces the possibility of screw loosening. This study explored the idea of changing the surface properties of the abutment screws to increase the preload and to reduce the probability of abutment screw loosening.

Previous studies have shown that the effect of repeated tightening on screw loosening is still controversial. Byrne et al reported a reduction in preload after repeated tightening and loosening cycles while Weiss et al and Kim et al suggested avoiding unnecessary repetitive tightening. Cardoso et al suggested replacement of the abutment screw if 10 cycles of repeated tightening cannot increase the resistance to screw loosening; in contrast, Guzaitis et al indicated that after 10 screw insertion cycles, a new screw must be used to maximize screw removal torque. Arshad et al investigated the effects of repetitive tightening cycles on the removal torque. After each tightening and loosening cycle, they observed a reduction in the removal torque compared to the initial torque. In the present study, each abutment screw was used only once due to the possibility of a decrease in the removal torque after repeated tightening cycles and the deterioration of the abutment screw surface modifications.
The effect of the AO method in implant-supported fixed prostheses is not known. There is no consensus on how the anodization process affects the reversal torque values. Therefore, one of the abutment screw groups was subjected to AO, and another group was subjected to DLC.

The anodization process has been used to overcome the weak tribologic properties of titanium, to increase the corrosion resistance, and to provide a hard- and abrasion-resistant—surface modification. In clinical usage, the gray reflection of titanium is known to produce an esthetically undesirable appearance, which can be reduced by anodizing the titanium supports or substructures. It has been reported by Yan et al that gold-colored titanium supports or substructures produce more acceptable esthetic results for patients.

Squier et al examined the effect of anodization on the reverse torque values of implants and abutments. In contrast to the present study, the removal torque values of the anodized abutments were lower than those of the non-anodized ones. This result can be attributed to the possible lubricant effect of AO on the abutment surface. Squier et al reported that the AO decreased the resistance to screw loosening by approximately 20%. These findings can be attributed to the different types of abutment or anodization parameters.

A previous study by Van Vuuren et al investigated the voltage-related variation of friction on the surfaces of titanium screws. When the voltage value was increased from 0 V to 50 V, the thickness of the oxide layer on the surface increased by approximately 0.23 mm. The increase in oxide layer increased the surface hardness and caused a reduction in the surface friction coefficient by 10% to 40%, depending on the load. The preload was reported to increase when the surface friction coefficient decreased.

For the AO group, the reversal torque values with thermomechanical cycling were found to be lower than those without, although these differences were not significant. In the AO group, the oxidation procedure might be changed by the tribologic properties of the titanium screw surface. The reduction of the coefficient of friction on the abutment screw surface can produce higher preload values. Smooth surfaces contact sufficiently under compression, thus reducing preload loss. In the present study, the lowest torque loss values in the AO group might be due to this effect. Furthermore, it could be concluded that the screw stability was maintained even after the thermomechanical cycling. The anodization process was carried out at 27 V, and a light blue color was obtained. This color code was determined for the healing caps and abutment screws of the 4.1-mm–diameter implants that were used in this study. However, further studies are needed to examine the effect of different voltages on the removal torque values of the titanium screws.

Titanium alloys are frequently coated with dry lubricants such as DLC and tungsten carbide. The DLC coating is recommended in titanium abutments and screws to improve the overall mechanical performance of the prosthetic system. DLC has become potentially useful on different surfaces due to its excellent wear and corrosion resistance, high hardness, and low coefficient of friction.

In an in vitro study conducted by Corazza et al, DLC-coated and noncoated abutments were examined before and after the dynamic loading. The results suggested that both dynamic loading and the effect of DLC coating were significant. The DLC coating is an alternative method to prevent screw loosening. de Moura et al investigated the removal torque values of the DLC-coated screws in splinted and nonsplinted implant crowns. Torque values in all groups decreased after dynamic loading, but the decrease in the DLC-coated group was lower than the others. Bacchi et al investigated the effects of tightening technique and abutment screw coating on the abutment screw loosening. According to the results of the study, tightening technique did not have a significant effect on screw loosening; standard abutment screws showed significantly lower removal torque values than DLC-coated screws.

DLC-coated implants were more resistant to screw loosening, consistent with the results of the present study. Lepesqueur et al reported that the DLC coating significantly affected the torque loss in external connection abutments. However, there was no significant difference between the internal-connection abutments. Diez et al assessed the changes in the implant-abutment interfaces of the DLC-coated and noncoated screws. It has been reported that the DLC-coated group did not have a significant reduction in the implant-abutment interface. Other variables must be explored to improve the potential role of DLC-coated screws in implant dentistry.

Various amounts of torque loss have been reported for abutment screws in previous studies. Xia et al found this rate to be 8.40% in the non–thermomechanical cycling group. Studies by Assunção et al and Neto et al revealed torque losses of 18.58% and 5.25%, respectively. Weiss et al reported a torque loss of 11% to 24% immediately after the final tightening. For the non–thermomechanical cycling group, the torque loss was 12.4% in the NT group, 11.03% in the AO group, and 17.13% in the DLC group in this study. Thus, the torque loss in the present study was consistent with these studies.

The measurement of reverse torque values is one of the methods used to compare preload in abutment screws indirectly. The reverse torque value gives the residual preload value in the screw, and the remaining...
preload shows the screw stability. The loosening of the experimental groups was calculated using the PERDEV of the reverse torque values. The PERDEV as a measure of torque loss is convenient to compare with outcomes from other studies.

The present study had some limitations. First, the study was performed in vitro, and in vivo studies may offer more insight into clinical relevance. The load was transferred directly to the abutment during thermomechanical loading. Furthermore, the abutment screws were evaluated based on a single voltage value. AO should be performed at different voltage values, and further studies should be conducted to examine the removal torque values. Another limitation was that the implant screw space was not evaluated for contamination with different liquids, and only 240,000 chewing cycles, simulating 1-year clinical use, were performed. Long-term simulations may provide further information about the screw loosening.

Within the limitations of this study, a significant increase was observed in the reverse torque values of abutment screws after surface modifications. The abutment screws with AO exhibited the lowest torque loss in groups with and without thermomechanical cycling. Further studies are needed to evaluate the possible effects of AO to maintain screw stability.

ACKNOWLEDGMENTS

This work was supported by the Erciyes University Scientific Research Projects Coordination Unit (grant no: TDH-2018-8144). The authors would like to thank Dr. Halis Ali Colpak and Dr. Haydar Albayrak for their valuable contributions to the editing stage of this study. Additionally, they are eager to thank Dr. Öktay Buğra Topuz for his support in the experimental stage.

One of the authors, Hasan Önder Gümüş, is a member of the academic supervisor committee for Bilimplant Proimtech. The other authors report no conflicts of interest.

Further details of DLC surface modification were not given for publication by Oerlikon Balzers, which supported the DLC experimental group in this study.

REFERENCES

Literature Abstracts

Primer on Etiology and Treatment of Progressive/Severe Periodontitis: A Systemic Health Perspective

Periodontology is an infectious disease-based discipline. The etiopathology of progressive/severe periodontitis includes active herpesviruses, specific bacterial pathogens, and proinflammatory cytokines. Herpesviruses and periodontopathogenic bacteria may interact synergistically to produce periodontal breakdown, and periodontal herpesviruses may contribute to systemic diseases. The infectious agents of severe periodontitis reside in deep pockets, furcation lesions, and inflamed gingiva, sites inaccessible by conventional (ie, purely mechanical) surgical or nonsurgical therapies, but accessible by systemic antibiotic treatment. This brief overview presents an effective, anti-infective treatment for severe periodontitis that includes systemic chemotherapy/antibiotics against herpesviruses (valacyclovir [acyclovir]) and bacterial pathogens (amoxicillin + metronidazole or ciprofloxacin + metronidazole), plus common antiseptics (povidone-iodine and sodium hypochlorite) and select ultrasonic scaling. The proposed treatment can cause a marked reduction or elimination of major periodontal pathogens, is acceptably safe, and can be carried out in minimal time with minimal cost.

Slots J. Periodontol 2000 2020;83:272–276. References: 45. Reprints: Jorgen Slots, jslots@usc.edu — Howard Landesman, USA

Outcome and Survival of Endodontically Treated Cracked Posterior Permanent Teeth: A Systematic Review and Meta-analysis

The aim of this systematic review and meta-analysis was to evaluate the success and survival rates of endodontically treated cracked posterior teeth and to assess the preoperative factors that affect tooth survival. The study protocol was registered on the PROSPERO international database of prospectively registered systematic reviews (CRD42019119091). An electronic search was performed for studies up to November 30, 2018 in the PubMed, Scopus, and Cochrane databases. All searches were done following PRISMA guidelines. Clinical studies evaluating the success and/or survival rate of cracked teeth that were endodontically treated with at least 1 year of follow-up were selected. The Newcastle-Ottawa scale was used to evaluate risk assessment. Publication bias was evaluated with funnel plots, and Egger test was performed to test asymmetry. Of the 410 studies identified in the initial search, 7 qualified for final analysis, all longitudinal cohort studies. The results of the meta-analysis indicated a survival rate of 88% (CI 0.81 to 0.94) and a success rate of 82% (CI 0.78 to 0.86) after 1 year of follow-up. The presence of a periodontal pocket associated with a crack resulted in a higher risk of tooth loss (relative risk 1.11). Patient sex, tooth type, position, the number of cracks present, and preoperative pulp status did not affect treatment survival rate (P > .05). Most of the included studies did not have an accurate record of many variables that could affect tooth survival. In addition, studies did not present extended follow-up periods or an adequate dropout rate to properly assess treatment outcome and survival. According to the results of the present systematic review and meta-analysis, root canal treatment in cracked posterior teeth can be considered a suitable treatment option. The presence of an associated periodontal pocket results in a lower survival rate.