Pull-off behavior of hand-cast, thermoformed, milled and 3D printed splints.

Verena Hickl a, Thomas Strasser b, Alois Schmid c, Martin Rosentritt d

a DS, Department of Prosthetic Dentistry, UKR University Hospital Regensburg, 93042 Regensburg, Germany

b DDS, Department of Prosthetic Dentistry, UKR University Hospital Regensburg, 93042 Regensburg, Germany

c DDS, Department of Prosthetic Dentistry, UKR University Hospital Regensburg, 93042 Regensburg, Germany

d PhD, Engineer, Department of Prosthetic Dentistry, UKR University Hospital Regensburg, 93042 Regensburg, Germany

*Corresponding author:

Martin Rosentritt

UKR University Hospital Regensburg

Department of Prosthetic Dentistry

93042 Regensburg

Germany

Phone: +49-941-944-6054

Fax: +49-941-944-6171

E-mail: martin.rosentritt@ukr.de

Submitted October 21, 2021; accepted April 20, 2022.
Purpose: To investigate the insertion/pull-out performance of splints produced by hand casting, thermoforming, milling, and 3D printing. **Materials and Methods:** A total of 120 identical mandibular splints (n = 8 per group) were manufactured with hand casting, thermoforming, milling, and 3D printing. The splints were stored in water at 37°C for 10 days and then placed onto cobalt-chromium arches and fixed on one side. Forces were applied to the other side (centric, perpendicular 50 N, 1 Hz) at two different positions (teeth 46 and 44/45) to pull out, and the test was then reset. The number of pull-out cycles until failure was recorded. The fracture behavior of the splints was investigated and characterized as fracture in the loading position, fracture at the fixation, or combined fracture. Splints were pulled off until fracture as a control (v = 1 mm/minute). Finite element analysis was used to verify the results. Statistical analyses were conducted with one-way-ANOVA, post hoc Bonferroni, Pearson correlation, and Kaplan-Meier log-rank tests (α = .05). **Results:** The mean pull-off cycles varied from 7,839 (V-Print) to 1,600,000 (Optimill) at the tooth 46 position and from 9,064 (Splint Flex) to 797,750 (Optimill) at the 44/45 position. Log-rank test showed significantly (P < .001) different pull-out cycles between the systems (χ²: 61,792 to 122,377). The thickness of the splints varied between 1.6 ± 0.2 mm (Splint Flex) and 2.3 ± 0.1 mm (V-Print Splint). Thickness and number of cycles were correlated (Pearson 0.164; P = .074). The pull-off forces of the control varied significantly (P ≤ .040), from 13.0 N (Keysplint) to 82.2 N (Optimill) at the tooth 46 position and from 25.2 N (Keysplint) to 139.0 N (Optimill) at the 44/45 position. **Conclusion:** The milled and cast splints survived more pull-off cycles than the printed or thermoformed splints. The pull-out performance showed differences among the tested splint systems and indicated the influence of the material properties and the processing. *Int J Prosthodont* 2022. doi: 10.11607/ijp.8068

Keywords: splint, 3D printing, in-vitro, Finite element analysis

Introduction
In addition to physical, manual, and physiological \(^1,^2\) therapies, bite splints have been shown to be a noninvasive, reversible treatment option for temporomandibular disorders (TMDs) and cranio-/mandibular disorders (CMDs) and for reducing tooth wear for patients with bruxism \(^3,^4\). An occlusal splint is used for the treatment of functional disorders and enables the testing of an occlusal or intermaxillary concept for definitive orthodontic, combined orthodontic-surgical, prosthetic and/or restorative therapy. One goal is centric occlusion with neutral assignment of the anterior and posterior teeth in accordance with the centric condylar position. An occlusal splint can be used for differential diagnostic clarification to protect the tooth structure from occlusal and incisal abrasion if the causal complaints are unclear.

Clinical failure of splints may result from discoloration, embrittlement/softening caused by water uptake, solubility, or fracture during handling or wear, all of which result in a loss of function \(^5,^16,^20\). Brittle fractures, which frequently occur during insertion or removal of the splint, may cause oral injuries. Insertion and pull-off forces and lift-off height might be influenced by the design, fitting and stability of the splint. Therefore, checking the fracture behavior of the splints during insertion and removal could be used to estimate the indication time.

Traditionally, adjusted splints \(^5\) are cast methacrylates or thermoformed thermoplastics on the basis of a laboratory-made gypsum model. A methacrylate splint, however, is limited in its clinical application due to its brittleness, polymerization shrinkage during manufacture, and residual monomers \(^6,^7\). Unlike methacrylate, thermoplastic foils (e.g., polyethyleneterephthalate) provide easy fabrication and high flexibility but require occlusal material addition for therapeutic applications. CAD/CAM milling and 3D-printing are alternative fabrication methods that allow easy and fast splint fabrication. They enable quick and inexpensive remanufacture in cases of fracture or when they need to be adjusted to continue the loss clinical treatment (e.g., bite adjustment).

Materials for CAD/CAM milling \(^8\) are produced under controlled industrial conditions with heat and pressure. Therefore, they have improved mechanical properties and reduced residual monomer.
content but also show brittleness. When milling, the size of the drill affects the fit and roughness of the inner sides of the splint. Milled splints showed good performance in pull-off tests.

Digital light processing (DLP) vat 3D-printing technologies use liquid photopolymer resins that are cured by a light projector during the construction of the splint. A proper alignment of the material and processes is crucial for optimizing the printing processes, requiring, for example, an appropriate viscosity for the resin. 3D-printed splints show acceptable accuracy but often limited conversion. Therefore, after printing and subsequent cleaning, the splints are finalized in a postpolymerization process using external light curing devices, sometimes combined with heat and vacuum treatment. In comparison with milled or hand-cast systems, 3D-printed splints may have lower mechanical properties, combined with worse results in application-related pull-off tests. However, the targeted use of greater splint flexibility can, for example, contribute to improved wearing comfort and better friction.

Even though splints are widely used, research on the performance of conventional or particularly new systems is very limited. Before introducing new materials, their mechanical stability should be checked, but the influences of aging or clinical interactions should also be tested. In contrast to tests on simple test specimen geometries, component testing on splints might help verify the clinical failures taking into account the respective types of production and design. In vitro testing and finite element analysis can be used to understand how splints can fail during insertion/pull-off. However, in vitro tests on standardized specimens can only provide a clinical assessment and cannot replace clinical studies, as individual patient-specific parameters such as the masticatory force or jaw movement cannot be taken into account.

It can be assumed that different materials and manufacturing processes should influence the in vitro performance and pull-off force of splints. In addition, the clinical application, i.e., how often and how the splint is inserted or removed certainly plays a decisive role in its service life.
The first hypothesis of this in-vitro study was that hand-cast, thermoformed, milled and 3D printed splints would show identical in-vitro pull-off performance and force. The second hypothesis was that the position of the force application would have no effect on the in vitro pull-off performance and force.

Materials and Methods:

A total of 15x8 identical lower (second molars 37 to 47) jaw splints, which were based on an STL file, were manufactured from various materials and material combinations (n=8 per material and group; Table 1), representing actual splint fabrication procedures: hand-casting (reference), thermoforming, CAD/CAM-milling and 3D-printing.

The splints were printed from splint materials Luxaprint OrthoPlus (DMG, G), Key Splint Soft (Keystone, USA, both printer: P30+, Straumann Cares P Series) and V-Print Splint/Splint Flex (Voco, G, Printer: Solflex 650, Voco). Printing was performed at 90° to the building platform in 50 µm layers with supporting structures. Specimens were either automatically cleaned (Straumann P Wash, Straumann, CH) or manually washed (Voco Pre-/Main-Clean, Voco, G). Post polymerization was performed with LED (P Cure, Straumann, CH) or Xenon-light (Otoflash N171, Ernst Hinrichs Dental, G). The splints were milled with Zenotec select ion (Wieland dental, A) or thermoformed with Erkoform 3D-Motion (Erkodent, G). The hand-cast system was manufactured in a pressure pot (55°, 2 bar, 15 min). The surface of the splints was finished (pumice powder with a goat hair brush, polymer polish with a cotton brush) before testing. The inner sides were left as manufactured to guarantee the required friction.

The splints are usually removed and reinserted several times a day for cleaning or eating. As a result, they are subjected to repeated loads, e.g. bending, and are prone to fracture. The tests were designed to simulate the insertion/removal of the splint at two different positions of the splint. Metal-based standardized jaws were produced (CoCr, Selective Laser Melting SLM) for the insertion/pull-off tests. The splints were fabricated with an undercut and fixed onto the metal jaw, simulating the clinical
situation. Each test splint was identical to the master splint and was individually controlled on the master model to ensure identical undercuts. Each undercut was evaluated by the same person to standardize this assessment and show comparable results. A metal plate was screwed onto the splint fixing the complete side of the splint, firmly onto the metal jaw from position 37 to 31.

To investigate two different pull-off situations, a screw was polymerized onto the jaw for fixation of the pull-off mechanism at tooth position 46 or 44/45 (Fig. 1). Cyclic pull-off and insertion forces (Chewing simulator, EGO, Regensburg, G; centric, perpendicular 50 N, 1 Hz, pneumatic) were applied to pull-off the splint on one side by 3 mm. Forces were applied via a flexible rubber trigger mechanism to avoid shear and bending forces on the splint. Before testing, all specimens were stored in distilled water for 10 days at 37 °C, allowing for aging and water absorption. During the insertion/pull-off tests, simultaneous thermal cycling (TC) between 5 °C and 55 °C (2 min each temperature) was performed for additional aging and to avoid dry-out of the splints. To investigate the principal effect of TC, one material (LuxaPrint-Ortho Plus, DMG) was investigated without TC.

During the tests, failures were checked three times a day, and damaged specimens were excluded from further simulation. Cycles until fracture (number of insertion/pull-off cycles) were recorded. Failures were characterized according to the tooth location, and the failure mode was documented (digital microscope VHX, Keyence, J; x50). Failure patterns were categorized as a fracture in the position of loading (tooth 46 or 44/45), fracture at the fixation (tooth 31) or a combined fracture (multiple). The thickness of the splint was measured in the area of the fracture and at the back end of the splint (control). Finite element analysis (Fusion 360, Autodesk, San Rafael, USA) was performed based on the STL file of the splint to verify the failure performance during testing. Before conducting the repeated testing, pull-off tests perpendicular to the occlusal surface of the splints were performed in a universal testing machine (v= 1mm/min, Z10, Zwick, Ulm, Germany) on two splints of each group to determine maximum pull-off forces (Fig. 1).
Means and standard deviations were calculated. Differences between mean values were analyzed using uni/bivariate analysis of variance and ANOVA. Correlations between the individual groups were investigated (Pearson). Levene’s test was performed to check for the error variance of the dependent variable across groups. Cumulative survival was calculated with the Kaplan-Maier log rank (Mantel-Cox) test (SPSS 25.0, SPSS, Chicago, IL, USA). The level of significance was set to $\alpha=0.05$.

Results:

Fractures occurred at mean pull-off forces between 13.0 N (Keysplint) and 82.2 N (Optimill) at the loading position of tooth 46 and 25.2 N (Splintflex) and 139.0 N (Optimill) in loading position tooth 44/45 (Table 2). Splints that were loaded in position 46 showed comparable or lower fracture values. Differences between the individual fracture forces were significant ($p\leq0.040$). Optimill specimens in loading in position tooth 46 survived the pull-off/insertion tests. The fracture force of these specimens was 49.0 +/- 19.9 N.

The mean pull-off cycles to failure varied between 7839 cycles (V-Print) and 1600000 cycles (Optimill) for fixation in tooth position 46 and 9064 cycles (Splint Flex) and 797750 cycles (Optimill) for fixation in tooth position 44/45 (Fig. 2 and 3, Table 2). Only splints made from Optimill (tooth position 46) survived the cycling tests and were loaded to failure in the pull-off test. Fracture of the splints during the insertion/pull-off test was characterized by brittle fracture between the loading position (38x tooth 44/45, 46x tooth 46), at the fixation (7x/7x) or multiple fracture (8x/5x)(Fig. 4). FEM analysis showed that the fracture was triggered on the bottom side of the splint in the loading position or the fixation (Fig. 5). The log-rank (Mantel-Cox) test showed significantly ($p=0.000$) different insertion/pull-off cycles between the systems (χ^2: 61,792-122,377, degree of freedom: 6) for both loading positions (Fig. 1). For the TC control (Luxaprint), the influence of TC on the number of cycles was found to be
not significant (Chi\(^2\)=0.395; p=0.530). The thickness of the splints varied between 1.6+/−0.2 mm (Splint Flex) and 2.3+/−0.1 mm (V-Print Splint) (Fig. 6). Pearson’s test showed a correlation between the number of cycles and the thickness (0.164; p=0.074). A significant correlation was found between the number of cycles and the pull-off force (0.623; p=0.170) in loading position 46, but no correlation (0.713; p=0.040) was noted for loading position 44/45. Individual survival times (mean, minimum, maximum) and failure patterns are displayed (Fig. 3 and Fig. 3, Table 2).

Discussion:

The first hypothesis of this in-vitro study that hand-cast, thermoformed, milled and 3D printed splints would show different in-vitro pull-off performance could not be confirmed. Milled or hand-cast splints showed higher mean survival rates and higher pull-off forces than printed or thermoformed systems.

The second hypothesis that the position of the force application affects the in vitro pull-off performance must be rejected. In general, the splints lasted longer when the loading was applied at position tooth 46. Printed and thermoformed splints showed different rankings in different loading positions.

The different in vitro behavior of the investigated splint materials can be partly explained by the individual material properties. The longest survival in both loading situations was found with highest the modulus of elasticity (~2.4 GPa) and flexural strength (~82 MPa). Milled materials showed comparable or even improved properties in comparison to standard methacrylate \(^8\), confirming their comparable or better performance. 3D printed materials generally provide lower flexural strength and modulus of elasticity. Particularly flexible and soft materials naturally and intentionally have even lower values (manufacturer’s information, Table 1).

The low mean survival rates of the printed splints can be attributed to the composition of the resin systems and the resulting lower flexural strength and modulus of elasticity. For 3D printing, a low-
viscosity formulation is needed, which guarantees workability in the printer. Fillers that could improve the strength and E-modulus \(^{27}\) can be added only in small amounts because they would limit the printability of the materials too much. In addition, an absence of chemical curing ingredients, which would improve the conversion rate and thus also the strength \(^{19,28–30}\), may be a reason for lower survival rates. By optimized positioning and alignment of the splint \(^{15,31}\), an improvement in the survival time might be achieved \(^{14,32}\).

The high standard deviation of the results may be a result of variations in the material quality or the influence of the fabrication \(^{32,33}\). Individual failures, especially of the printed materials occurring during a very early stage of the test, might be explained by superficial defects or roughness effects due to printing and may underline the necessity of cleaning, postpolymerization and polishing \(^{10,34}\). This assumption might be confirmed by the fact that considerably longer survival rates were found for other specimens from the same groups. In a similar study (tooth 46, 12 mm), significantly lower survival cycles could be determined in a comparable loading situation \(^{10}\). Contrary to the current study, thermoformed and hand-cast systems showed longer survival in comparison to printed or milled splints. This is probably attributed to the significantly higher pull-off height of 12 mm in comparison to the actual applied 3 mm and shows the dependence of the results on the test design.

Although based on one identical model, the thickness at the back end of the splints varied noticeably between 1.6 mm and 2.3 mm. Three of the four printed splints and the thermoformed system were significantly thinner (although based on identical data) than the milled or handcast splints, which indicates the influence of the printing process or the postfabrication procedure. It is also conceivable that material was removed during the cleaning process. Deviations might certainly appear due to the different production processes and corresponding tolerances, as reported previously \(^{10}\). Different thicknesses at the fracture area might be attributed to thinning and aging effects (fracture of the polymeric chains) at the loading point. A correlation between the number of cycles and the thickness
of the splints could be proven. These results suggest that adapted thickness, as well as adapted postprocessing, can extend the lifespan of splints.

Assuming a mean of three insertions and removals per day, 1095 pull-off cycles are required to simulate one year of oral service. It is expected that these splints will be usable for at least a few years. The minimum load cycles with values between 16 and 655 cycles to failure, however, indicate that individual splints could fail much earlier. Nevertheless, due to the estimated occlusal wear of resin-based splint materials, such a long application time is not anticipated.

The materials showed different pull-off forces, with the lowest values found for the soft or flexible printing materials, followed by the standard printing materials and then thermoformed or handcast systems. The highest values were found for the milled splints. In comparison to the hand-cast systems, the milled system was found to have an enhanced performance expressed by a longer application time and a smaller distribution of defect sites. One explanation could be the influence of the industrial processing of the material, resulting in improved conversion and mechanical stability. For example, the E-modulus is significantly affected by thermoforming. For five out of seven investigated materials, differences in the fracture force depending on the loading situation could be found. At position 44/45, the forces were significantly higher. This may be explained by the lower deflection/shorter lifting arm at position 46 compared to position 44/45. For the acrylate-based systems, there appears to be a relationship between the pull-off force and the flexural strength, but not with the modulus of elasticity. The pull-off test leads to an effective aging of the splints, which results in a significant reduction of the pull-off force, e.g., for Optimill. A correlation between the number of cycles and the fracture load could be confirmed. Due to the small number of cases, the forces must be evaluated with caution.

By analyzing the failure pattern and performing a finite element analysis, it was determined that a fracture is caused by the high deflection and repeated bending at the lower side of the splint. A fracture may be more likely to occur in these areas if there are sharp edges or initial damage.
According to the modulus of the material, the fracture pattern might be brittle or flexible. The fracture toughness of the material and the intaglio surface influenced by the milling process must be considered. The fracture behavior was characterized in most cases by a fracture in the area of the loading site, followed by fractures in the area of the anterior fixation. These results confirmed earlier data and followed the expectations presented in the FEM. For the printed splints, the distribution of fracture patterns may indicate fabrication defects or insufficiently connected print layers. The evaluation of Optimill at tooth 46 is only possible to a limited extent, since all specimens survived the pull-off test and were then manually loaded to fracture. In addition to typical signs of aging, an influence and weakening of the splint caused by the manual fixation of the mount with methacrylate could not be excluded. An alternative cause of damage in the 35 region might be a too strong retention of the splint on the metal model. All systems showed brittle fractures during pull-off, which poses a clinical risk for injury. Patients should be careful when repeatedly removing their splints to prevent fractures. The FEM and the assessment of the fracture patterns suggest that the bottom side of all splints should also be inspected for defects before use. To improve their clinical performance, polishing - paying attention to the walls - and cleaning might be of particular importance to avoid undesirable splint fracture.

Conclusion:

The pull-off performance of the splints is highly influenced by the type of material and the manufacturing process. Loading at tooth position 6 results in longer loading cycles for almost all materials. Pull-off tests showed that milled and hand-cast splints provided the longest survival. If a very long duration of use is needed, these are to be preferred. Printed and thermoformed splints showed comparable but 10-fold lower survival times than milled and handcast splints.

Acknowledgments
The authors would like to thank individual manufacturers for providing materials. This research did not receive any specific grant from funding agencies in the public, commercial, or not-for-profit sectors. The authors report no conflicts of interest.

References

Fig. 1: Experimental setup (left: cyclic pull-off testing chamber with splint, occlusal fixation and vertical pull-off fixation, right: fracture test)
Fig. 2: Loadings until failure (mean and standard deviation)
Fig. 3: Kaplan Meier cumulated survival of the individual split materials (loading position above 44/45, below 46)
Fig. 4: Failure pattern of the splints after pull-off testing (\(^*\): Exception Optimill tooth 46 after static testing)
Fig. 5: FEM (left: loading position tooth 44/45, right: 46) indicating locations with highest van Mises-stresses [MPa] in the loading position or the anterior fixation.
Fig. 6: Thickness of the splints [mm] (mean, standard deviation) in the area of fracture and at the back end.
<table>
<thead>
<tr>
<th>System</th>
<th>Material, Manufacturer</th>
<th>Processing, Manufacturer</th>
<th>Composition, properties</th>
</tr>
</thead>
<tbody>
<tr>
<td>Thermoforming</td>
<td>Erkodur, 2,00 mm, 120 mm (Erkodent, Pfalzgrafenweiler, Germany) LOT 111888/11307</td>
<td>Erkoform-3D Motion (Erkodent, Pfalzgrafenweiler, Germany)</td>
<td>Polyethyleneterephthalat PET-G, flexural strength 69 [MPa], water uptake 1.27 g/cm², flexural modulus 2.2 [GPa]</td>
</tr>
<tr>
<td>Hand-cast system MA</td>
<td>Palapress vario transparent (Kulzer, Hanau, Germany) LOT K010201/K010089</td>
<td>Pressure pot (55°C, 2 bar, 15 min)</td>
<td>Powder: methacrylate-Copolymer, liquid: methacrylate, Di-methacrylate, flexural strength 82.9 [MPa], flexural modulus 2.5 [GPa], water uptake 21.6 μg/mm², solubility 0.4 μg/mm², flexural strength 95 [MPa], flexural modulus 2.39 [GPa], water uptake <30 μg/mm², no solubility in water</td>
</tr>
<tr>
<td>Milling</td>
<td>Optimill Crystal Clear (dentona, Dortmund, Germany) LOT 20040</td>
<td>Zenotec select ion (Wieland Dental+Technik, Pfarzheim, Germany); spacer 30 μm, undercut 0.1 mm, correction radius 1.1 mm</td>
<td>Polymethylmethacrylat, Methylenmethacrylat, Dibenzoyleperoxide, Methyl 2-methylprop-2-enolate, flexural strength 70 [MPa], flexural modulus 3.7 [GPa], water uptake <30 μg/mm², no solubility in water</td>
</tr>
<tr>
<td>Print</td>
<td>LuxaPrint-Ortho Plus (DMG, Hamburg, Germany) LOT 170211</td>
<td>P30+ (Straumann Care, Basel, Switzerland)</td>
<td>Dimethacrylate, EBPADMA, Dipheny(2,4,6-trimethylbenzoyl)phosphinoxid (> 90% bisphenol A dimethacrylate, 385/405 nm, flexural strength ≥ 70 [MPa], flexural modulus ≥ 1 [GPa], Shore D ≥ 60)</td>
</tr>
<tr>
<td>Print</td>
<td>Key Splint Soft (Keystone Industries, Gibbstown, NY, USA) LOT K84189</td>
<td>P30+ (Straumann Care, Basel, Switzerland)</td>
<td>Methacrylate, flexural strength 48 [MPa], flexural modulus ~0.75 [GPa]</td>
</tr>
<tr>
<td>Print</td>
<td>V-Print Splint (Voco, Cuxhaven, Germany) LOT 2006565</td>
<td>Sofflex 650 (Voco, Cuxhaven, Germany)</td>
<td>Acrylate, Bis-EMA, TEGDMA, hydroxypropyl methacrylate, flexural strength 75 [MPa], flexural modulus ≥ 2.1 [GPa], water uptake 27.7 μg/mm², solubility < 0.1 μg/mm², butylated hydroxytoluene BHT, dipheny(2,4,6-trimethylbenzoyl) phosphine oxide TPO, 385 nm)</td>
</tr>
<tr>
<td>Print</td>
<td>Splint Flex (Voco, Cuxhaven, Germany) LOT V87146</td>
<td>Sofflex 650 (Voco, Cuxhaven, Germany)</td>
<td>Flexural strength 55 [MPa], flexural modulus ~0.8 [GPa]</td>
</tr>
</tbody>
</table>

Table 1: Materials and fabrication
<table>
<thead>
<tr>
<th>Material</th>
<th>Loading cycles until failure</th>
<th>Fracture force [N]</th>
<th>Loading cycles until failure</th>
<th>Fracture force [N]</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Mean</td>
<td>Std</td>
<td>Min</td>
<td>Max</td>
</tr>
<tr>
<td>Luxaprint Ortho Plus</td>
<td>15967</td>
<td>11438</td>
<td>5046</td>
<td>31135</td>
</tr>
<tr>
<td>Optimill crystal clear</td>
<td>797750</td>
<td>121897</td>
<td>643500</td>
<td>1019000</td>
</tr>
<tr>
<td>Key Splint Soft</td>
<td>12719</td>
<td>8353</td>
<td>163</td>
<td>24761</td>
</tr>
<tr>
<td>Palapress vario</td>
<td>645516</td>
<td>142026</td>
<td>346125</td>
<td>839000</td>
</tr>
<tr>
<td>Erkodur</td>
<td>41315</td>
<td>23733</td>
<td>655</td>
<td>67180</td>
</tr>
<tr>
<td>Splint Flex</td>
<td>9064</td>
<td>6675</td>
<td>1212</td>
<td>18367</td>
</tr>
<tr>
<td>V-Print Splint</td>
<td>45447</td>
<td>53101</td>
<td>38</td>
<td>128823</td>
</tr>
</tbody>
</table>

Table 2: Number of loading cycles until failure in the pull-off test (Mean, standard deviation, minimum, maximum). Load to fracture ([N], mean, standard deviation (STD)).