Effects of abutment height and type of cements on bond strength of monolithic zirconia single crowns luted to one-piece zirconia implants

Sarah Maria Blender¹, Dentist
Jochen Mellinghoff², Dentist, Dr. med. dent.
Sebastian Benedikt Gröller³, Dentist
Sigmar Schnutenhaus⁴, Dentist, Priv.-Doz Dr. med. dent., M.Sc.
Katharina Kuhn¹, Senior Dentist, Dr. med. dent.
Ralph Gunnar Luthardt¹, Professor and Head, Prof. Dr. med. dent. habil.
Heike Rudolph, Senior Dentist¹, Priv.-Doz. Dr. med. dent.

¹ Department of Prosthetic Dentistry, Center of Dentistry, Ulm University, Albert-Einstein-Allee 11, 89081 Ulm, Germany
² Private Practice, Pfauengasse 14, 89073 Ulm, Germany
³ Private Practice, Tuttlingerstr. 1, 78628 Rottweil, Germany
⁴ Private Practice, Breiter Wasmun 10, 78247 Hilzingen, Germany

Corresponding author:
Sarah Maria Blender
Department of Prosthetic Dentistry, Center of Dentistry, Ulm University
Albert-Einstein-Allee 11, 89081 Ulm, Germany
E-Mail: sarah.blender@uniklinik-ulm.de
Phone: +49 731 500 64201
Fax: +49 731 500 64247

Submitted April 28, 2020; accepted February 16, 2021.

The results have been presented in part (oral presentation) at:
16th Voco Dental Challenge, September 21st 2018, Cuxhaven, Germany; achieved: 3rd place
68th Annual Meeting of the German Society for prosthetic dentistry and biomaterials (DGPro e.V.), 17th to 18th Mai 2019, Rostock, Germany

ABSTRACT

Purpose: To test the bond strength of one-piece zirconia implants with either standard or reduced height using different luting agents and pretreatments of the ceramic crowns’ inner surfaces. **Materials and Methods:** Twenty monolithic CAD/CAM–fabricated zirconia single crowns were cemented onto 10 one-piece zirconia implants with either 5-mm or 4-mm abutment height (Z-Look3 Evo SLM, Z-Systems) using 13 different luting agents. After water storage, the crowns were removed using a specially developed test fixture in a universal testing machine (Z010, Zwick/Roell). The maximum force was recorded (N), and the force per area was calculated (MPa). The statistical evaluation was performed using univariate analysis of variance (SPSS version 25.0, IBM). **Results:** A mean of 4.19 MPa (SD 2.90) at 5 mm and 3.89 MPa (SD 2.85) at 4 mm was obtained for all luting agents. The highest values were achieved for a resin-modified glass-ionomer cement, with 12.37 MPa (4 mm)/12.00 MPa (5mm). The lowest values were shown for a long-term temporary material, with 0.73 MPa (4 mm)/1.07 MPa (5 mm). Only a polycarboxylate cement ($P < .001$) and a glass-ionomer cement ($P = .006$) showed statistically significant differences, in favor of the reduced abutment height. The latter did not significantly reduce bond strength for any of the materials examined. **Conclusion:** Implants with a reduced abutment height are clinically suitable. Pretreatment of the crowns’ inner surfaces with ceramic primer showed to be advantageous. *Int J Prosthodont 2021. doi: 10.11607/ijp.7110*
INTRODUCTION

According to current standards in clinical treatment, an implantation is the method of choice to replace missing teeth, unless permitted by the clinical situation and the patient’s medical history. With growing demand for implant-based solutions in dentistry, the continuous development of new implant constructions and materials became an important part in dental research.

Over the past decades, implants made of titanium are considered “gold standard” in the selection of materials. Next to all the positive characteristics like mechanical strength, biocompatibility and a clinically excellent survival rates, the grey color of the material can be challenging in esthetically relevant areas (1, 2). In particular in combination with thin overlying mucosal tissue, the greyish shimmering of the implant leads to dissatisfaction among patients and dentists (3, 4). The accumulation of titanium particles in surrounding tissue and even in regional lymph nodes after implantation has also been described. A correlation between the amount of particles and the time since implantation was observed (5, 6). Although little clinical evidence has been reported, hypersensitivity and local symptoms due to titanium implants have been described (1, 7).

Patients’ demand for metal-free alternatives to reduce foreign body sensation and to optimize the aesthetic outcome has also increased in recent years (3). With the development of modern high-performance ceramics, new alternative implant materials are now available. In particular, polycrystalline yttrium-stabilized zirconium oxide (3Y-TZP) with its excellent mechanical properties is the most frequently used material for ceramic implants (8). In addition to the well-described biocompatibility of this material, the low affinity for plaque formation plays an important role in the reduction of peri-implant inflammatory processes, thus promoting osseointegration of the implant (9). Most zirconia implants currently available are one-piece systems made of Y-TZP. Even though long-term study results are rare, initial clinical results
provide satisfactory results. First clinical studies show survival rates of 95.6% after one year (10) and 95% after five years (11) and are therefore comparable to those of titanium implants. The same applies to marginal bone loss, which can also be a parameter for successful implantation. With an average rate of 0.79 mm bone loss after one year, there is no significant difference to titanium implants (10). Two-piece zirconia implant systems are also available, but show a higher average loss rates due to a lack of osseointegration. The main reason probably is the gap between abutment and implant as a potential source of risk for inflammation (12).

Implant-supported reconstructions can be either screw-retained or cemented, with no significant differences in the survival rates after five years. Cemented restorations in particular have several advantages, such as a cost-effective and simple work-flow, an excluded loss of the non-existing implant screw and also improved and simplified results in esthetics and occlusion due to the absence of a screw channel (13). However, cemented restorations are more prone to biological complications. The presence of an adhesive gap increases the risk of peri-implant inflammation of the surrounding tissue. Special attention must be paid to remaining luting material in the peri-implant sulcus after cementation, as this can lead to bone loss (14, 15). Complete healing of the peri-implant tissue can be expected with the subsequent removal of excess material.

When selecting a suitable restorative material, all-ceramic systems made of lithium disilicate or zirconium oxide are the materials of choice. Due to advances and material innovations in the field of CAD/CAM technology, monolithic fabricated restorations are preferred over veneered all-ceramic superstructures (12). These are usually cemented or adhesively seated due to a lack of available ceramic implant systems that allow screw fixation of restorations.

Furthermore dentists are often challenged with a lack of vertical space, making the prosthetic restoration of natural teeth or implant abutments complex and difficult. The influence of various
preparation parameters of natural teeth on the retention and survival of dental restorations has been well described in literature (16, 17). Precise guidelines and regulations for the height of abutments are so far missing in German standard text books. But things look different for the necessary height of prepared teeth. Both Strub et al. and Reitemeier et al. require an axial wall height after preparation of at least 3 mm in order to ensure a sufficient mechanical retention of the future dental restoration (18, 19). When reducing the axial wall height, the surface area available for bonding is minimized, which is also important for the retention of dental restorations (17). Additional accessories such a boxes and grooves can compensate unfavorable preparation parameters, but are contraindicated when using CAD/CAM fabricated restorations as the latter demand a strict avoidance of undercuts and sharp edges (20). Therefor the problem of adequate retention requires a proper selection of the luting agent and a good knowledge of the available materials and their contents to compensate for eventually deficiencies of the preparation. While bonding with conventional materials is based on a mechanical friction between the surfaces and the cement, adhesive luting agents in combination with a ceramic primer can adhere directly to both surfaces (tooth/abutment and inner surface of the restoration) to increase the retention of the restoration (21). In addition to established materials, new developments should also be considered within the scope of an investigation.

The aim of the study was to evaluate the effects of reducing the abutment height of one-piece zirconia implants and to assess the influence of different luting agents and different surface conditioning methods on the retention of monolithic zirconia single crowns.

MATERIAL AND METHODS
The study was divided into 16 test-series (n = 20), depending on the selected luting agents and the different conditioning methods for the inner surface of the ceramic crowns (Table 1). In each test series, ten zirconia one-piece implants with a standard abutment height of 5 mm and ten zirconia one-piece implants with a reduced abutment of 4 mm were used resulting in 320 test specimens. All implants (Z5m (m=monotype) Zirkolith® implants, Z-Systems AG, Oensingen, CH) were made of Y-TZP-A Bio-HIP® ceramic. Compared to the abutments with reduced height, the standard abutments had a reduced upper diameter but at the same time an enlarged bonding surface, due to the different heights of the abutments with the same taper (7°) and the same lower diameter (4.4 mm). To prevent rotation, the abutment design had two parallel surfaces with grooves on the opposite sides (Figure 1). Twenty monolithic CAD/CAM fabricated zirconium single-tooth crowns (Ceramill Zolid HT+ Preshades roling, Amann Girrbach GmbH, Pforzheim, GER) were produced by a dental laboratory (Joachim Maier Dental Design, 88662 Überlingen, GER). Designed as a maxillary premolar, the marginal area of the crown was deliberately over contoured (1.5-2mm) to prevent the assembled implant-crown complex sliding out of the test fixture during the debonding process in the universal testing machine (Z010, Zwick/Roell, Ulm, GER; Figure 1).

Prior to cementation, all abutments were cleaned with alcohol and then dried with oil-free air. Any further pretreatment of the surface was not required by the manufacturer. The cementation area of the one-piece implants (abutment part) showed no optical or tactile surface roughness. The abutment surface was not sandblasted at any time. This applies to the pretreatment of the bonding as well as all necessary steps of the specimens’ preparation for reuse. Before cementation, the abutment surface was cleaned with alcohol. After debonding, eventual cement residues were carefully removed with a laboratory cloth. In some rare cases small remains were
carefully sheared off with a scalpel, which did not damage the integrity of the abutment surface (light microscopic inspection).

The inside of the ceramic crowns was sandblasted with aluminium oxide particles (50 µm, 2 bar, 10 seconds, held at a distance of 10 mm), cleaned with ethanol in an ultrasonic bath (5 minutes) and dried with oil-free air. Depending on the luting materials used, a further pretreatment of the surface was applied where required (Table 1). The luting agents were mixed according to the manufacturers’ instructions. Light curing and the use of a glycerine gel have been applied when indicated. The ceramic crowns were filled with the luting agent, placed on the abutments with finger pressure and excess marginal luting material was removed with a microbrush. All specimens were loaded with a force of 5 kg for the indicated setting time at room temperature (24°C) and then stored in a warming cabinet at 37°C in distilled water. After twenty-four hours, the specimens were fixed in the universal testing machine to detach the restorations from the implant abutments. For this purpose, an experimental test fixture was developed based on an established testing method for investigating the shear and tensile bond strength of dental materials (22, 23). By using anatomical crowns, shear and tensile bond forces are simultaneously present. In order to ensure pull-off forces in axial direction, the upper part of each specimen was fixed in the testing machine using a mounting box with a bottom opening of 4.8 mm analogous to the thickest part of the implant (Figure 2 and Figure 3). The over contoured margins of the crowns prevented the specimen from slipping through the hole in the bottom of the mounting box during crown removal (Figure 3b). To attach the implant to the lower holding device, the external thread of the implants was used (Figure 3 d - f).

Prior to the debonding of each test series, the parameters of the universal testing machine were checked: crosshead speed of 0.5 mm/min, preload of 5 N, a force-limit of 10,000 N and a force
threshold of 20 N for analysis. The maximum retention force at the time of debonding in N was
recorded (testeXpert II, Zwick/Roell, Ulm, GER). To receive the combined shear bond and
tensile strength in MPa, the surface area of the abutments was calculated based on the
manufacturers’ construction drawings. Based on these results (mm²), the recorded maximum
force [N] was used to calculate the force per area (N/mm² = MPa).
After the debonding of each test series, the crowns and implants were meticulously cleaned.
First, a careful mechanical removal of larger cement residues was done with a scalpel. Then the
abutments and crowns were checked under the light microscope for any eventual cement
residues. In case of such residues, the crowns’ inside was completely cleaned by sandblasting
with alumina particles (25 µm, 2 bar, held at a distance of 10 mm). For reuse, the surface of the
abutments was treated with alcohol, laboratory cloths and in a few cases with a scalpel, since
there were only a few cement residues on the abutment surface. A light microscope (see below)
was used to ensure an entirely residue-free surface.
To qualitatively assess the fracture behavior of the luting agents, a light microscopic examination
(magnification 2.5-fold) was carried out (Leica MS 5, Leica Camera AG, Wetzlar, GER). The
fracture behavior was classified into two different categories: (1) Adhesive fracture between two
different surfaces, therefore either between the luting agent and the abutment or between the
luting agent and the inner surface of the ceramic crowns, (2) Cohesive fracture therefore within
in the ceramic or luting agent. In order to obtain a quantitative evaluation for this, the bonding
surface was divided into different areas. The percentage of the total surface and the surface in the
individual areas was calculated resulting in an exact description of the individual fracture pattern
in percent. This analysis was always performed first. Afterwards the specimen were cleaned for
reuse as described above.
The data acquired was statistically analyzed with a suitable statistical software (IBM SPSS Statistics 25, USA). Subsequent to the descriptive statistics and the t-test for two independent samples to evaluate the influence of the different abutment heights on the bond strength in the different test series, an analysis of variance (ANOVA) was performed to determine the influence of surface pretreatment. In order to identify which subgroups showed a significantly different outcome, a Tukey post-hoc test was applied. The level of significance was set at $\alpha = 0.05$ for all analysis.

RESULTS

All 320 implant-crown complexes have been detached from each other. One specimen was excluded from data analysis due to incorrect fixation in the universal testing machine.

Influence of the different luting agents

The bond strength values (\pmSD) in MPa and the maximum retention force at the time of debonding (\pmSD) in N are shown in Table 2 for the 13 different luting agents independent of the different abutment heights. Materials from the group of glass-ionomer cements and self-adhesive luting agents showed the highest bond strength and retentive forces, followed by adhesive luting agents and conventional materials, like polycarboxylate cement (Durelon™ (DUR), 3M ESPE, USA) or phosphate cement (Phosphatzement (PHZ), KULZER, Hanau). The lowest values were shown for temporary luting agents.

Influence of the different abutment heights
When comparing the bond strength values of all specimens with an reduced abutment height (n=129) with abutments with a standard height (n=130) regardless of the different luting agents, there were no significant differences in bond strength in MPa (4 mm: 4.19 (± 2.90); 5 mm: 3.89 (± 2.85)) or the maximum retention force at the time of debonding in N (4 mm: 221.67 (± 153.34); 5 mm: 241.94 (± 177.33)).

The mean (±SD) bond strength in MPa for each test series and its subgroups are shown in Table 3. The use of a polycarboxylate cement (Durelon™ (DUR), 3M ESPE, USA) (p<0.001) and a glass-ionomer cement (3M™ Ketac™ Cem (KEC), 3M ESPE, USA) (p=0.006) showed statistically significant differences, while all other materials showed no significant differences in bond strength when evaluating the influence of abutment height in relation to the different luting agents. However, the statistically significant difference was in favor of the lower abutment height.

Influence of surface pretreatment

When using primers with adhesive resin based luting agents (Bifix QM (BQM), VOCO GmbH, Cuxhaven without primer: 4 mm/5 mm: p=0.917; Bifix QM (BQM), VOCO GmbH, Cuxhaven with primer: 4 mm/5 mm: p=0.169 (Figure 4) and Panavia™ V5 (PV5), kuraray Noritake, JPN 4 mm (no primer) and 4 mm (primer used): p<0.001; 5 mm (no primer) and 5 mm (primer used): p<0.001) (Figure 4) there was a significant difference in bond strength in MPa for both abutment heights. The influence of pure sandblasting when no ceramic primer was used showed no significant difference when using the adhesive resin based luting agents Panavia™ V5 (PV5), kuraray Noritake, JPN (4 mm (no sandblasting or the use of a primer) and 4 mm (sandblasting and no primer used): p=0.922); 5 mm (no sandblasting or the use of a primer) and 5 mm (sandblasting and no primer used): p=0.539) (Figure 4).
Fracture behavior analysis

The resin-based glass-ionomer cement (FujiCem 2 (FUJ), GC Europe, JPN) specimens mainly showed cohesive fracture behavior within the luting material and small amounts of adhesive fractures. In the test-series with a polycarboxylate cement (Durelon™ (DUR), 3M ESPE, USA), a phosphate cement (Phosphatzement (PHZ), KULZER, Hanau), two adhesive resin based luting agents (Bifix QM (BQM), VOCO GmbH, Cuxhaven and Panavia™ 21 (P21), kuraray Noritake, JPN) and a self-adhesive resin based luting agent (Bifix SE (BSE), VOCO GmbH, Cuxhaven), most of the luting material was found on the inner surface of the ceramic crowns with small parts also detected on the lower half of the abutments. Examining the use of a temporary cement Harvard implant semi permanent (HIS), HARVARD, Hoppegarten), an adhesive resin based luting agent (Panavia™ V5 (PV5), kuraray Noritake, JPN), three adhesive resin based luting agents (3M ™Rely X™ Unicem (REX), 3M ESPE, USA; SpeedCEM Plus (SCP), ivoclar vivadent, Ellwangen and Panavia™ SA Cement Plus (PSA), kuraray Noritake, JPN) and two glass-ionomer cements (Aquameron (AQM), VOCO GmbH, Cuxhaven and (3M™ Ketac™ Cem (KEC), 3M ESPE, USA), most of the luting material was found on the inner surface of the crowns and only a small portion on the lower half of the abutments. Cohesive fractures could only be observed sporadically.

DISCUSSION

For the one-piece ceramic implants and the existing abutment geometry evaluated here, no negative influence on the bond strength was found, when examining a reduced abutment height compared to the standard height, irrespective of the luting material or pretreatment methods.
The comparison of the study results with those of similar studies is very difficult due to the multitude of different experimental set-ups and parameters and only few studies are comparable. Even the many research reports with a similar experimental set-up and similarly selected parameters examine a wide range of different materials for single-tooth crowns and abutments. Only studies with zirconia ceramic abutments and monolithic zirconia ceramic crowns evaluated with a crown pull-off tests can be considered comparable to the study at hand. As long as there are no standardized test procedures for determining retention and resistance behavior using standardized test set-ups, even small changes in the parameters during implementation can have a major impact on the results obtained (24-27). Probably the biggest difference to other test set-ups is the fixation of the test specimen in the universal testing machine. Often, the specimen is attached to the upper jig of the machine by wires or special crowns with built-in loops while the implant or abutment is polymerized in resin or similar materials and is in contact with the lower part of the machine via an indirect connection (24, 28-37). The abutments or implants in turn are fixed with resins or clamps to the lower jig of the machine.

In the experimental set-up presented here, a specially developed test fixture was used. It is a further advancement of an established fixture for shear and tensile bond strength testing (38, 39). The type of upper and lower fixation was chosen such that the tensile load is applied purely axially without any influence of a load moment or torque. This also ensures that only the contact areas between the materials of interest, i.e. the implant-crown complexes themselves, are tested while avoiding confounders due to additional fixation materials and the kind of – often indirect – fixation. The upper fixation consists of a mounting box, which has a bottom opening analogous to the width of the implant and can be fixed by an internal thread to the external thread of the upper part of the machine. The holding box is then put over the external thread of the implant,
but stops in the area of the crown margin, because the crown walls have been thickened. In the lower area of the testing machine the implant is fixed directly over the thread in the testing machine.

In the present study, the bond strength values of the individual luting agents showed a wide range, but a trend between the individual material classes could be observed. Comparing the achieved bond strengths of the different classes of luting materials, the following ranking results: glass ionomer cements > self-adhesive resin-based luting agents > resin-based adhesive luting agents > phosphate cement > polycarboxylate cement > temporary cements.

This can be attributed to the different mechanisms of attachment of the luting agents. Conventional materials are held in place by mechanical mechanisms such as friction, which is why the design of the preparation and the surface quality play an important role here (21). These materials therefore necessitate a very close fit between the restoration and the natural tooth/implant abutment in order to achieve sufficient retention.

In adhesive materials a chemical component is used in addition to the macro-mechanical retention, which is clearly noticeable in the interaction of luting material and tooth or abutment surface and the resulting retention strength. Several studies particularly recommend the use of dual or self-adhesive resin based luting agents when zirconia ceramics are used (40-43). Since removability is an inherent property of (semi)permanent luting materials, it is not surprising that the lowest adhesion values are achieved with these.

Some studies showed similar values of bond strength for the same materials tested in this study (33-37). Differences were found in particular for phosphate cements when compared to other studies. These cements showed much higher bond strength values compared to our study (35).
The retention force of phosphate cement is the result of friction only. As no surface treatment was applied to the implant abutments used in this study, resulting in a smooth surface and a lower retention, this smoothness could be a reason why luting agents with adhesive molecules showed to some degree higher bond strength values than conventional materials. The resin-based glass-ionomer cement showed the highest values for bond strength. Due to the strength of the adhesive bond, a direct chemical bond between the luting material and the zirconia surfaces cannot be ruled out. In the authors' opinion, this bond cannot be explained by friction alone.

The reduction of the abutment height showed significant differences in the test-series when using a polycarboxylate cement (Durelon™ (DUR), 3M ESPE, USA) and a glass-ionomer cement (3M™ Ketac™ Cem (KEC), 3M ESPE, USA).

The fact that 4mm abutments, i.e., those with reduced height, also showed significantly higher values depending on the respective luting material allows the conclusion that although statistically significant, there is no clinical relevance of the abutment height of the one-piece implants investigated here. Otherwise, the 5mm abutments should have consistently shown the higher bond strength values. This conclusion is based solely on the comparison of the abutment geometries tested here.

A similar in-vitro study examined the influence of 4 mm and 5.5 mm zirconia abutments and found significant differences in the use of temporary cements, self-adhesive materials and glass ionomer cements. The possible use of an additional ceramic primer and the pretreatment of the zirconia abutments was not described (35). Other studies using different materials for abutments and crowns showed that the influence of several abutments with a height of 5 mm or less did not significantly differ, while abutments with a height of 5 mm or more showed an increase in retention.
Different pretreatment methods for zirconia ceramic crowns are controversially discussed in the literature. The results of this study showed, that the use of sandblasting with aluminum oxide particles and the use of ceramic primers lead to an increase in bond strength. These observations are also confirmed by other studies (30, 44-46). Roughening of the surface results in an expansion and improved wettability of the contact area. When using resin-based luting agents, an additional treatment of the surface with a silane coupling-agent or ceramic primer with 10-Methacryloyloxydecyl dihydrogen phosphate (MDP) molecules showed significantly increased bond strength values (44, 46).

The fracture analysis showed mainly an adhesive fracture behaviour and thus revealed a weak point in the bond between the respective luting agents and the smooth abutment surface. Only the luting agents with highest bonding strength values showed areas of cohesive fracture. According to the manufacturers’ instructions, additional surface pretreatment was not required. In this study, a clear improvement in bond strength could be achieved after pretreating the abutment surface with appropriate means such as alumina particle sandblasting. Several studies showed that a significant improvement of bond strength could be reached on both, natural teeth and titanium abutments, when using sandblasting products for surface pretreatment of the inner surfaces of restorations (29, 36, 47).

Currently, there is no laboratory test procedure with which the clinical parameters of the oral cavity can be exactly reproduced. This should be considered when looking at in-vitro results (24, 29, 48). However, laboratory tests have the advantage that they are cost-effective, clearly reproducible and that they are a rapid alternative to clinical studies, which is important for estimating the technical properties of new materials (24, 26, 29). As temperature may influence the setting or curing of luting materials, the implants were stored at 37°C until immediately
before luting and removed from the warming cabinet only for the actual luting process. In addition, the setting time at body temperature specified by the manufacturer was doubled and the connected specimens were immediately returned to the warming cabinet to take account of this aspect.

In order to be able to reuse the single-tooth crowns, cement residues were removed and the surfaces cleaned as described above. The cementation gap was not measured before the bonding of the individual test series nor after each cleaning, as other in-vitro investigations of the research group, using densely sintered ZrO2 specimen showed an eventual loss of surface material in the single-digit micrometer range (less than 6 µm) after using sandblasting with aluminum oxide particles of 25 µm in size and below 1 bar pressure and repeated non-contact-optical measurements (49). While a more precise measurement was not possible due to the lack of a suitable measuring method at our research site, the potential loss was assessed as negligible.

The negative influence of long-term water storage or thermocycling, the existence of which is known (50, 51), was not the subject of this in vitro study and should be subject of future investigations.

The presented results apply only to abutments with the same outer shape and taper. In addition to abutment height, even minimal changes in parameters such as abutment shape or taper can lead to major differences in study results. Therefore, only results of studies with similar testing procedures and parameters are comparable (17, 24-27).

CONCLUSION
The proper selection of a luting agent when fixing zirconia ceramic single-crowns onto one-piece zirconia implants is important. Materials classified in the group of glass-ionomer based cements or self-adhesive resins showed the highest bond strength values, followed by adhesive resins, conventional luting agents and temporary materials.

Depending on the use of different luting agents, only a minority of the selected materials showed significant differences in bond strength in favor of the lower abutment height, thus being inconsequential for clinical application. For this kind of one-piece zirconia implant, comparable bond strength values can be achieved with both abutment heights under in-vitro conditions.

Surface pretreatment with ceramic primers showed significantly higher bond strength values.

ACKNOWLEDGMENTS

This study was supported in part by Z-Systems and Joachim Maier Dental Design.

REFERENCES

FIGURE LEGENDS

Figure 1. Ceramic Crown and one-piece zirconia implant. The ceramic crown was deliberately over contoured (1.5 - 2mm) in the marginal area to prevent the assembled implant-crown complex sliding out of the test fixture during the debonding process in the universal testing machine.
Figure 2. The specimen fixed to the lower mounting box of the universal testing machine.
Figure 3. The upper fixture (a) is connected to the universal testing machine via two shekels. At the lower end of the upper fixture there is an external thread that can be used to attach the mounting box with a hole in the bottom. The implant part of the test specimen has a smaller diameter than the hole in the mounting box (b), which allows the implant part to slide through the bottom. The over contoured crown has a larger diameter than the hole, making it impossible for the test specimen to slip through. The mounting box including the crown-implant test specimen can be connected to the upper part of the testing machine via the internal thread. Only the implant part extends out of the box (c). The implant part of the test specimen is then screwed into the internal thread of the lower mounting box (d, e). This fixture is then connected to the universal testing machine via another two shekels (f).
Figure 4. Bond strength values (MPa) of the adhesive cement BQM, using different conditioning methods for the pretreatment of the inner surface of the ceramic crown.
Figure 5. Bond strength values (MPa) of the adhesive cement PV5, using different conditioning methods for the pretreatment of the inner surface of the ceramic crown.
Table 1. Materials used and the different conditioning methods for the inner surface of the ceramic crowns

<table>
<thead>
<tr>
<th>Material (Group)</th>
<th>Manufacturer</th>
<th>Type of Application</th>
<th>Light-curing/ application of glycerine gel</th>
<th>Pretreatment of ceramic crowns</th>
</tr>
</thead>
<tbody>
<tr>
<td>Harvard implant semi permanent (HIS)</td>
<td>HARVARD, GER</td>
<td>Automix syringe</td>
<td>Light-curing 20 sec per side</td>
<td>Al2O3 50µm, 10 sec Cleaning with Ethanol</td>
</tr>
<tr>
<td>Durelon ™ (DUR)</td>
<td>3M ESPE, USA</td>
<td>Automix capsule</td>
<td>-</td>
<td>Al2O3 50µm, 10 sec Cleaning with Ethanol</td>
</tr>
<tr>
<td>Phosphatzement (PHZ)</td>
<td>KULZER, GER</td>
<td>Manually mixture of powder and liquid</td>
<td>-</td>
<td>Al2O3 50µm, 10 sec Cleaning with Ethanol</td>
</tr>
<tr>
<td>Bifix QM (BQM)</td>
<td>VOCO GmbH, GER</td>
<td>Automix syringe</td>
<td>Light-curing 20 sec per side</td>
<td>Liquid Strip transparent, ivoclar vivadent, GER Cleaning with Ethanol</td>
</tr>
<tr>
<td>Panavia™ 21 (P21)</td>
<td>kuraray Noritake, JPN</td>
<td>Manually mixture of two pastes</td>
<td>Oxyguard II, kuraray Noritake, JPN</td>
<td>Al2O3 50µm, 10 sec Cleaning with Ethanol</td>
</tr>
<tr>
<td>Panavia™ V5 (PV5)</td>
<td>kuraray Noritake, JPN</td>
<td>Automix syringe</td>
<td>Light-curing 20 sec per side</td>
<td>Ceramic Bond, VOCO GmbH, GER, Cleaning with Ethanol</td>
</tr>
<tr>
<td>Bifix SE (BSE)</td>
<td>VOCO GmbH, GER</td>
<td>Automix syringe</td>
<td>Light-curing 20 sec per side</td>
<td>Liquid Strip transparent, ivoclar vivadent, GER</td>
</tr>
<tr>
<td>3M ™Rely X™ Unicem (REX)</td>
<td>3M ESPE, USA</td>
<td>Automix capsule</td>
<td>-</td>
<td>Al2O3 50µm, 10 sec Cleaning with Ethanol</td>
</tr>
<tr>
<td>SpeedCEM Plus (SCP)</td>
<td>ivoclar vivadent, GER</td>
<td>Automix syringe</td>
<td>Liquid Strip transparent, ivoclar vivadent, GER</td>
<td>Al2O3 50µm, 10 sec Ivoclean, ivoclar vivadent Cleaning with Ethanol</td>
</tr>
<tr>
<td>Panavia™ SA Cement Plus (PSA)</td>
<td>kuraray Noritake, JPN</td>
<td>Automix syringe</td>
<td>-</td>
<td>Al2O3 50µm, 10 sec Cleaning with Ethanol</td>
</tr>
<tr>
<td>Aquameron (AQM)</td>
<td>VOCO GmbH, GER</td>
<td>Manually mixture of powder and liquid</td>
<td>-</td>
<td>Al2O3 50µm, 10 sec Cleaning with Ethanol</td>
</tr>
<tr>
<td>3M™ Ketac™ Cem (KEC)</td>
<td>3M ESPE, USA</td>
<td>Automix capsule</td>
<td>-</td>
<td>Al2O3 50µm, 10 sec Cleaning with Ethanol</td>
</tr>
<tr>
<td>FujiCem 2 (FUJ)</td>
<td>GC Europe, JPN</td>
<td>Automix syringe</td>
<td>-</td>
<td>Al2O3 50µm, 10 sec Cleaning with Ethanol</td>
</tr>
<tr>
<td>Bifix QM (BOP)</td>
<td>VOCO GmbH, GER</td>
<td>Automix syringe</td>
<td>Liquid Strip transparent, ivoclar vivadent, GER Light-curing 20 sec per side</td>
<td>Al2O3 50µm, 10 sec Cleaning with Ethanol</td>
</tr>
<tr>
<td>Panavia™ V5 (PUO)</td>
<td>kuraray Noritake, JPN</td>
<td>Automix syringe</td>
<td>Light-curing 20 sec per side</td>
<td>Cleaning with Ethanol</td>
</tr>
<tr>
<td>Panavia™ V5 (PGO)</td>
<td>kuraray Noritake, JPN</td>
<td>Automix syringe</td>
<td>Light-curing 20 sec per side</td>
<td>Al2O3 50µm, 10 sec Cleaning with Ethanol</td>
</tr>
</tbody>
</table>
Table 2. Bond strength values (MPa) and retention force (N) of the different luting agents

<table>
<thead>
<tr>
<th>Test-series</th>
<th>n</th>
<th>Bond strength in [MPa] Mean ± SD</th>
<th>Retention force in [N] Mean ± SD</th>
</tr>
</thead>
<tbody>
<tr>
<td>HIS</td>
<td>20</td>
<td>0.92 (± 0.36)</td>
<td>53.50 (± 23.08)</td>
</tr>
<tr>
<td>DUR</td>
<td>19</td>
<td>1.62 (± 1.02)</td>
<td>89.96 (± 51.20)</td>
</tr>
<tr>
<td>PHZ</td>
<td>20</td>
<td>2.98 (± 1.25)</td>
<td>170.49 (± 68.02)</td>
</tr>
<tr>
<td>BQM</td>
<td>20</td>
<td>1.67 (± 0.32)</td>
<td>95.71 (± 16.47)</td>
</tr>
<tr>
<td>P21</td>
<td>20</td>
<td>3.60 (± 0.51)</td>
<td>207.75 (± 36.51)</td>
</tr>
<tr>
<td>PV5</td>
<td>20</td>
<td>4.41 (± 0.97)</td>
<td>253.70 (± 58.84)</td>
</tr>
<tr>
<td>BSE</td>
<td>20</td>
<td>2.67 (± 0.84)</td>
<td>153.99 (± 53.17)</td>
</tr>
<tr>
<td>REX</td>
<td>20</td>
<td>3.71 (± 0.92)</td>
<td>213.40 (± 55.45)</td>
</tr>
<tr>
<td>SCP</td>
<td>20</td>
<td>4.30 (± 0.72)</td>
<td>248.80 (± 51.36)</td>
</tr>
<tr>
<td>PSA</td>
<td>20</td>
<td>5.40 (± 0.85)</td>
<td>309.60 (± 46.81)</td>
</tr>
<tr>
<td>AQM</td>
<td>20</td>
<td>3.68 (± 1.22)</td>
<td>212.10 (± 70.60)</td>
</tr>
<tr>
<td>KEC</td>
<td>20</td>
<td>5.20 (± 1.13)</td>
<td>296.95 (± 54.98)</td>
</tr>
<tr>
<td>FUJ</td>
<td>20</td>
<td>12.18 (± 1.82)</td>
<td>700.95 (± 117.23)</td>
</tr>
</tbody>
</table>
Table 3. Bond strength values (MPa) and retention force (N) of the different luting agents depending on the different abutment heights

<table>
<thead>
<tr>
<th>Test-series</th>
<th>Abutment height in [mm]</th>
<th>n</th>
<th>Bond strength in [MPa] Mean ± SD</th>
<th>p-value</th>
<th>Retention force in [N] Mean ± SD</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>Mean ± SD</td>
<td></td>
<td>Mean ± SD</td>
</tr>
<tr>
<td>HIS</td>
<td>4</td>
<td>10</td>
<td>0.76 (± 0.27)</td>
<td>0.051</td>
<td>40.48 (± 14.55)</td>
</tr>
<tr>
<td></td>
<td>5</td>
<td>10</td>
<td>1.07 (± 0.37)</td>
<td></td>
<td>66.51 (± 23.16)</td>
</tr>
<tr>
<td>DUR</td>
<td>4</td>
<td>9</td>
<td>2.51 (± 0.77)</td>
<td><0.001</td>
<td>133.06 (± 41.10)</td>
</tr>
<tr>
<td></td>
<td>5</td>
<td>10</td>
<td>0.82 (± 0.23)</td>
<td></td>
<td>51.18 (± 14.55)</td>
</tr>
<tr>
<td>PHZ</td>
<td>4</td>
<td>10</td>
<td>3.19 (± 1.59)</td>
<td>0.468</td>
<td>168.77 (± 84.09)</td>
</tr>
<tr>
<td></td>
<td>5</td>
<td>10</td>
<td>2.77 (± 0.83)</td>
<td></td>
<td>172.20 (± 51.86)</td>
</tr>
<tr>
<td>BQM</td>
<td>4</td>
<td>10</td>
<td>1.80 (± 0.32)</td>
<td>0.067</td>
<td>95.40 (± 17.06)</td>
</tr>
<tr>
<td></td>
<td>5</td>
<td>10</td>
<td>1.54 (± 0.27)</td>
<td></td>
<td>96.09 (± 16.77)</td>
</tr>
<tr>
<td>P21</td>
<td>4</td>
<td>10</td>
<td>3.52 (± 0.49)</td>
<td>0.496</td>
<td>186.40 (± 25.80)</td>
</tr>
<tr>
<td></td>
<td>5</td>
<td>10</td>
<td>3.68 (± 0.54)</td>
<td></td>
<td>229.10 (± 33.70)</td>
</tr>
<tr>
<td>PV5</td>
<td>4</td>
<td>10</td>
<td>4.43 (± 1.06)</td>
<td>0.919</td>
<td>234.50 (± 56.31)</td>
</tr>
<tr>
<td></td>
<td>5</td>
<td>10</td>
<td>4.38 (± 0.93)</td>
<td></td>
<td>272.90 (± 57.61)</td>
</tr>
<tr>
<td>BSE</td>
<td>4</td>
<td>10</td>
<td>2.58 (± 0.66)</td>
<td>0.644</td>
<td>136.37 (± 34.85)</td>
</tr>
<tr>
<td></td>
<td>5</td>
<td>10</td>
<td>2.76 (± 1.02)</td>
<td></td>
<td>171.60 (± 63.75)</td>
</tr>
<tr>
<td>REX</td>
<td>4</td>
<td>10</td>
<td>3.78 (± 0.85)</td>
<td>0.759</td>
<td>199.90 (± 44.95)</td>
</tr>
<tr>
<td></td>
<td>5</td>
<td>10</td>
<td>3.65 (± 1.03)</td>
<td></td>
<td>226.90 (± 63.77)</td>
</tr>
<tr>
<td>SCP</td>
<td>4</td>
<td>10</td>
<td>4.14 (± 0.60)</td>
<td>0.310</td>
<td>219.10 (± 31.90)</td>
</tr>
<tr>
<td></td>
<td>5</td>
<td>10</td>
<td>4.47 (± 0.82)</td>
<td></td>
<td>278.50 (± 50.90)</td>
</tr>
<tr>
<td>PSA</td>
<td>4</td>
<td>10</td>
<td>5.70 (± 0.82)</td>
<td>0.122</td>
<td>301.70 (± 43.46)</td>
</tr>
<tr>
<td></td>
<td>5</td>
<td>10</td>
<td>5.10 (± 0.82)</td>
<td></td>
<td>317.50 (± 50.97)</td>
</tr>
<tr>
<td>AQM</td>
<td>4</td>
<td>10</td>
<td>3.63 (± 1.51)</td>
<td>0.856</td>
<td>192.00 (± 79.63)</td>
</tr>
<tr>
<td></td>
<td>5</td>
<td>10</td>
<td>3.73 (± 0.92)</td>
<td></td>
<td>232.20 (± 57.31)</td>
</tr>
<tr>
<td>KEC</td>
<td>4</td>
<td>10</td>
<td>5.86 (± 0.85)</td>
<td>0.006</td>
<td>310.20 (± 44.84)</td>
</tr>
<tr>
<td></td>
<td>5</td>
<td>10</td>
<td>4.56 (± 1.01)</td>
<td></td>
<td>283.70 (± 63.10)</td>
</tr>
<tr>
<td>FUJ</td>
<td>4</td>
<td>10</td>
<td>12.37 (± 1.49)</td>
<td>0.658</td>
<td>655.00 (± 78.93)</td>
</tr>
<tr>
<td></td>
<td>5</td>
<td>10</td>
<td>12.00 (± 2.16)</td>
<td></td>
<td>746.90 (± 134.50)</td>
</tr>
</tbody>
</table>