Home Subscription Services
 
   

 
Quintessence International
QI Home Page
About the Editor
Editorial Board
Accepted Manuscripts
Submit
Author Guidelines
Submission Form
Reprints / Articles
Permissions
Advertising
MEDLINE Search
 
 
 
 
 
FacebookTwitterYouTube
Quintessence Publishing: Journals: QI
Quintessence International

Edited by Eli Eliav

ISSN 0033-6572 (print) • ISSN 1936-7163 (online)

Publication:
February 2003
Volume 34 , Issue 2

Back
Share Abstract:

Evaluation of marginal microleakage in Class II cavities: Effect of microhybrid, flowable, and compactable resins

Alessandra Rezende Peris, DDS; Sillas Duarte, Jr, DDS, MS, PhD; Marcelo Ferrarezi de Andrade, DDS, MS, PhD

Pages: 93-98
PMID: 12666857

Objective: The goal of the present study was to evaluate the microleakage on the cementum/dentin and enamel surfaces in Class II restorations, using different kinds of resin composite (microhybrid, flowable, and compactable). Method and materials: Forty human caries-free molars were extracted and selected. Eighty Class II standardized cavities were made in the cervical wall at the cementoenamel junction (CEJ) and at the mesial and distal surfaces. The teeth were divided into four groups: G1 adhesive system + microhybrid resin composite Z100; G2 adhesive system + compactable resin composite Prodigy Condensable; G3 adhesive system + flowable resin composite Revolution + Z100 resin composite; G4 adhesive system + Revolution fluid resin + compactable resin composite Prodigy Condensable. The adhesive system used in this study was Scotchbond Multi-Purpose Plus. The specimens were thermocycled in baths of 5C and 55C for 1,000 cycles and immersed in 50% silver nitrate solution. The specimens then were sectioned and evaluated on degree of dye penetration. Results: The results were evaluated using the nonparametric Kruskall-Wallis test, which showed a statistically significant difference between groups G1 and G4, G2 and G4, and G3 and G4. Conclusions: None of the materials was able to eliminate the marginal microleakage at the cervical wall; the application of a low-viscosity resin composite combined with a compactable resin composite significantly decreased the microleakage.

Full Text PDF File | Order Article

 

Get Adobe Reader
Adobe Acrobat Reader is required to view PDF files. This is a free program available from the Adobe web site.
Follow the download directions on the Adobe web site to get your copy of Adobe Acrobat Reader.
  © 2014 Quintessence Publishing Co Inc
 

Home | Subscription Services | Books | Journals | Multimedia | Events | Blog
Terms of Use | Privacy Policy | About Us | Contact Us | Advertising | Help | Sitemap | Catalog