Home Subscription Services
 
   

 
Quintessence International
QI Home Page
About the Editor
Editorial Board
Accepted Manuscripts
Submit
Author Guidelines
Submission Form
Reprints / Articles
Permissions
Advertising
MEDLINE Search
 
 
 
 
 
FacebookTwitterYouTube
Quintessence Publishing: Journals: QI
Quintessence International

Edited by Eli Eliav

ISSN 0033-6572 (print) • ISSN 1936-7163 (online)

Publication:
September 2004
Volume 35 , Issue 8

Back
Share Abstract:

Glass-fiber frameworks for fixed partial dentures: Laser-interferometrical in vitro analysis

Till N. Göhring, Dr med dent/Gianluca Zappini, Dr eng/Jörg Mayer, Dr mat sci/Matthias Zehnder, Dr med dent

Pages: 668-675
PMID: 15366534

Objectives: Laboratory tests confirmed superior physical properties of fiber-reinforced resin composites; however, clinical failures continue to be observed. This in vitro study introduces a new method to measure strain and fracture resistance in glass fiber–reinforced pontics. Method and materials: Thirty standardized pontics in five groups were fabricated. Pontics were reinforced with: glass fiber (group 1); glass-fiber bundle surrounded by glass-fiber mesh (group 2); glass fiber with glass-fiber mesh parallel to the pontic’s occlusal surface (group 3); or glass-fiber mesh parallel to glass-fiber bundle (group 4). Unreinforced resin composite pontics served as controls (group 5). A laser interferometer measured inner strains (µm/mm) in sectioned pontics, occlusally loaded with 250 N and 450 N, with a universal testing machine. Inner strains were measured on three levels (1, 2, and 3). Specimens were then loaded to crack onset, and loads were recorded. Comparisons were made using analysis of variance. Kruskal-Wallis and Fisher’s exact tests were used, respectively, for nonparametric and categorical data. Results: Group 3 showed significantly lower mean strain values than controls. No significant differences in maximal inner strain values or crack onset loads were recorded. The framework of Group 3 inhibited crack propagation significantly better than that in groups 2 and 5. Conclusion: Within the limitations of this study, speckle interferometry proved to be a promising method for analyzing strains of pontics under load. The tested framework designs in this study had only limited influence on load-to-crack onset. When strategically placed, a glass-fiber mesh prevented crack propagation.

Full Text PDF File | Order Article

 

Get Adobe Reader
Adobe Acrobat Reader is required to view PDF files. This is a free program available from the Adobe web site.
Follow the download directions on the Adobe web site to get your copy of Adobe Acrobat Reader.
  © 2014 Quintessence Publishing Co Inc
 

Home | Subscription Services | Books | Journals | Multimedia | Events | Blog
Terms of Use | Privacy Policy | About Us | Contact Us | Advertising | Help | Sitemap | Catalog