Home Subscription Services

Quintessence International
QI Home Page
About the Editor
Editorial Board
Accepted Manuscripts
Author Guidelines
Submission Form
Reprints / Articles
Quintessence Publishing: Journals: QI
Quintessence International

Edited by Eli Eliav

ISSN 0033-6572 (print) • ISSN 1936-7163 (online)

March 2009
Volume 40 , Issue 3

Share Abstract:

Shrinkage and hardness of dental composites acquired with different curing light sources

Stephen S. Clifford, Karla Roman-Alicea , Daranee Tantbirojn, and Antheunis Versluis

Pages: 203–214
PMID: 19417884

Objectives: Curing light sources propel the photopolymerization process. The effect of 3 curing units on polymerization shrinkage and depth of cure was investigated. Method and Materials: The curing lights were a conventional and a soft-start quartz-tungsten-halogen (QTH) light source and a light-emitting diode (LED) source. The soft-start QTH and LED intensity outputs were 9% and 17% less than the conventional QTH source, respectively. For a 40-second light cure, the light energy was 32% and 14% lower, respectively. The light sources were applied to 4 restorative composites (microfilled, 2 hybrids, and nanofilled). For each light unit–composite combination, the development of postgel shrinkage during polymerization was measured with strain gauges (n = 15), and the Knoop hardness was tested at 0.5-mm-depth increments to assess degree of cure 15 minutes after polymerization (n = 5). The results were statistically analyzed with 2-way ANOVA at .05 significance level, followed by pairwise comparisons. Results: Both factors, light source and composite, significantly affected postgel shrinkage and hardness (P < .05). The conventional QTH unit generally produced the highest shrinkage and hardness (at composite surface and 2-mm depth). The soft-start QTH unit generated the least shrinkage but achieved the lowest depth of cure. The resulting values for the LED unit were mostly in between the results of the other 2 units. Conclusion: Curing lights should provide sufficient light energy to thoroughly cure composite restorations, which might be achieved without compromising shrinkage stresses if initial intensity is reduced. (Quintessence Int 2009;40:203–214)

Full Text PDF File | Order Article


Get Adobe Reader
Adobe Acrobat Reader is required to view PDF files. This is a free program available from the Adobe web site.
Follow the download directions on the Adobe web site to get your copy of Adobe Acrobat Reader.
  © 2017 Quintessence Publishing Co Inc

Home | Subscription Services | Books | Journals | Multimedia | Events | Blog
Terms of Use | Privacy Policy | About Us | Contact Us | Advertising | Help | Sitemap | Catalog