Home Subscription Services
 
   

 
Quintessence International
QI Home Page
About the Editor
Editorial Board
Accepted Manuscripts
Submit
Author Guidelines
Submission Form
Reprints / Articles
Permissions
Advertising
MEDLINE Search
 
 
 
 
 
FacebookTwitter
Quintessence Publishing: Journals: QI
Quintessence International

Edited by Eli Eliav

ISSN 0033-6572 (print) • ISSN 1936-7163 (online)

Publication:
April 2008
Volume 39 , Issue 4

Back
Share Abstract:

Zirconia resin-bonded fixed partial dentures in the anterior maxilla

Martin Rosentritt, MS/Carola Kolbeck, DDS/Stefan Ries, DDS/Marlen Gross/Michael Behr, DDS, PhD/Gerhard Handel, DDS, PhD

Pages: 313319
PMID: 19081900

Objective: To determine the fracture resistance of resin-bonded fixed partial dentures (RBFPDs) by examining the influence of framework design and abutment mobility. Method and Materials: RBFPD frameworks were made of zirconia (Cercon Base, Degudent) or a nonprecious alloy (reference; Dentitan, Elephant Dental) and veneered with ceramic (Cercon Ceram S, Degudent). The zirconia framework design varied between a 2-retainer RBFPD with 3 different levels of tooth mobility (groups 1 to 3) and a 1-retainer cantilever version with 2 different grades of tooth mobility (groups 4 and 5). To achieve different mobility (rigid, medium, movable), the roots of the teeth were covered with a polyether material of different thicknesses. All RBFPDs were adhesively luted on prepared human teeth (Panavia 21 Ex, Kuraray). The specimens were mechanically (1.2 3 106; 25 N) and thermally (6,000 3 5C/55C; 2 minutes per cycle) cycled and finally loaded to failure (universal testing machine 1445, Zwick) at a speed of 1 mm/min. Results: The fracture force of the reference RBFPD (541 N) was significantly higher than that of both cantilever RBFPDs (group 4 = 271 N, group 5 = 104 N) and one 2-retainer group with rigid abutments (group 3 = 150 N). With 2 movable abutments, the fracture force increased to 261 N (group 1) and with mixed movable/rigid teeth to 324 N (group 2). Zirconia RBFPDs showed improved survival with increased tooth mobility, but the framework design showed only a minor influence on loss rate and fracture resistance. Conclusions: Assuming chewing forces in anterior areas between 200 and 300 N, 1- and 2-retainer zirconia RBFPDs may be suitable as minimally invasive provisional alternatives to metal-supported RBFPDs. (Quintessence Int 2008;39:313319)

Key words: adhesive denture, all-ceramic, metal-free, zirconia

Full Text PDF File | Order Article

 

Get Adobe Reader
Adobe Acrobat Reader is required to view PDF files. This is a free program available from the Adobe web site.
Follow the download directions on the Adobe web site to get your copy of Adobe Acrobat Reader.
  © 2014 Quintessence Publishing Co Inc
 

Home | Subscription Services | Books | Journals | Multimedia | Events | Blog
Terms of Use | Privacy Policy | About Us | Contact Us | Advertising | Help | Sitemap | Catalog