Home Subscription Services
 
   

 
Quintessence International
QI Home Page
About the Editor
Editorial Board
Accepted Manuscripts
Submit
Author Guidelines
Submission Form
Reprints / Articles
Permissions
Advertising
MEDLINE Search
 
 
 
 
 
FacebookTwitterYouTube
Quintessence Publishing: Journals: QI
Quintessence International

Edited by Eli Eliav

ISSN 0033-6572 (print) • ISSN 1936-7163 (online)

Publication:
April 2006
Volume 37 , Issue 4

Back
Share Abstract:

Fracture strength of teeth restored with all-ceramic posts and cores

Wiebke Friedel, DMD / Matthias Kern, DMD, PhD

Pages: 289295
PMID: 16594360

Objective: The purpose of this in vitro investigation was to evaluate the fracture strength of endodontically treated teeth restored with different all-ceramic posts and cores. Method and Materials: Seventy-two endodontically treated human maxillary central incisors were divided into 3 groups with 24 teeth each and restored with 1 of the following methods: prefabricated zirconia ceramic posts and resin composite buildups; zirconia ceramic posts and copy-milled alumina ceramic cores (2-piece technique), or copy-milled all-ceramic posts and cores made from a zirconia-reinforced glass-infiltrated alumina ceramic (1-piece technique). Each group was divided into 3 subgroups of 8 samples each, consisting of teeth that did not receive crown restorations and were stored for 60 days, teeth restored with all-ceramic crowns and stored for 60 days, and teeth restored with all-ceramic crowns and subjected to 1.2 million loading cycles with 30 N in a chewing simulator. Results: The mean fracture strengths ranged from 205 to 522 N. Prefabricated zirconia posts and resin composite buildups showed a statistically significantly lower fracture strength after chewing simulation than teeth restored with prefabricated zirconia posts and alumina ceramic cores. Conclusion: All-ceramic posts and cores made with the 2-piece technique showed promising fracture strengths under the tested conditions.

(Quintessence Int 2006;37:289295)
Key words: all-ceramic, artificial aging, chewing simulation, fracture strength, posts and cores

Full Text PDF File | Order Article

 

Get Adobe Reader
Adobe Acrobat Reader is required to view PDF files. This is a free program available from the Adobe web site.
Follow the download directions on the Adobe web site to get your copy of Adobe Acrobat Reader.
  © 2014 Quintessence Publishing Co Inc
 

Home | Subscription Services | Books | Journals | Multimedia | Events | Blog
Terms of Use | Privacy Policy | About Us | Contact Us | Advertising | Help | Sitemap | Catalog