Home Subscription Services
 
   

 
Quintessence International
QI Home Page
About the Editor
Editorial Board
Accepted Manuscripts
Submit
Author Guidelines
Submission Form
Reprints / Articles
Permissions
Advertising
MEDLINE Search
 
 
 
 
 
FacebookTwitterYouTube
Quintessence Publishing: Journals: QI
Quintessence International

Edited by Eli Eliav

ISSN 0033-6572 (print) • ISSN 1936-7163 (online)

Publication:
March 2013
Volume 44 , Issue 3

Back
Share Abstract:

Antibacterial temporary restorative materials incorporating polyethyleneimine nanoparticles

Abramovitz, Itzhak / Beyth, Nurit / Paz, Yafit / Weiss, Ervin I. / Matalon, Shlomo

Pages: 209-216
DOI: 10.3290/j.qi.a29056

Objectives: Temporary restorative materials (TRMs) often rapidly lose their dimensional stability and antibacterial properties after exposure to humidity and bacterial infection. Quaternary ammonium polyethyleneimine (QPEI) nanoparticles (NP) are long-lasting, stable, biocompatible, and nonvolatile antibacterial polymers. In the present study, we incorporated QPEI NP into standard TRMs and examined their influence on dimensional stability and their ability to reduce bacterial leakage.
Method and Materials: A modified split-chamber model was used in vitro to test calcium sulfate-based and zinc oxide-eugenol- based TRMs (Coltosol and IRM, respectively). Both materials were tested with and without 2% wt/wt incorporated QPEI NP for fluid and bacterial leakage.
Results: The calcium sulfate-based TRM displayed the lowest microleakage and highest antibacterial resistance. Two-way A NOVA analysis of the fluid transport test results showed that incorporation of 2% wt/wt QPEI NP significantly increased the sealing ability of both TRMs (P < .01). A nalysis of survival curves by the Kaplan-Meier method showed that the calcium sulfate-based TRM with 2% wt/wt QPEI NP survived the bacterial load significantly more effectively than did the zinc oxide-eugenol-based TRM (P < .0001).
Conclusion: Incorporation of 2% w/w QPEI NP may prominently improve the sealability and the antibacterial properties of TRMs. TRMs incorporating antibacterial nanoparticles may be clinically advantageous for sealing the endodontic access cavity to avoid reinfection of the root canal system during endodontic treatment.

Keywords: nanoparticles, polyethyleneimine, temporary restorative materials

Full Text PDF File | Order Article

 

Get Adobe Reader
Adobe Acrobat Reader is required to view PDF files. This is a free program available from the Adobe web site.
Follow the download directions on the Adobe web site to get your copy of Adobe Acrobat Reader.
  © 2014 Quintessence Publishing Co Inc
 

Home | Subscription Services | Books | Journals | Multimedia | Events | Blog
Terms of Use | Privacy Policy | About Us | Contact Us | Advertising | Help | Sitemap | Catalog