Follow Us      


   Offical Journal of The Academy of Osseointegration

Share Page:

Volume 32 , Issue 3
June 2012

Pages 295-301

High Temperature–Treated Bovine Porous Hydroxyapatite in Sinus Augmentation Procedures: A Case Report

Tiziano Testori, MD, DDS/Giovanna Iezzi, MD, PhD/Licia Manzon, MD, DDS/Giovanni Fratto, MD, DDS/Adriano Piattelli, MD, DDS/Roberto L. Weinstein, MD, DDS

PMID: 22408774
DOI: 10.11607/prd.00.1073

Among the graft materials that can be used clinically, xenografts are the most common. Xenografts are of bovine, porcine, or equine origin and require the complete removal of proteins to avoid immunologic problems and the risk of transmission of prions, viruses, etc. Protein destruction can be achieved by a chemical procedure using organic solvents and heat treatment. After this process, a carbonated hydroxyapatite similar to human bone remains. The aim of this case report is to investigate the bone formation in a sinus augmentation procedure using a high temperature–treated bovine porous hydroxyapatite. A 58-year-old woman underwent bilateral sinus augmentation using this biomaterial. After 9 months, during stage-two surgery, two core biopsy specimens were retrieved and treated to obtain thin ground undecalcified sections. Microscopically, newly formed bone was present at the interface with most particles. The major portion of the particles appeared to be completely lined and surrounded by bone. No obvious signs of resorption were present on the biomaterial surface. No gaps or connective tissue were present at the bone-biomaterial interface. No inflammatory infiltrate or fibrous encapsulation of the particles was present. Histomorphometry showed that the percentages of newly formed bone, residual grafted particles, and marrow spaces were 25.1% ± 2.3%, 37.3% ± 1.1%, and 38.5% ± 3.1%, respectively. The excellent properties demonstrated by Endobon are probably a result of its particular hydroxyapatite porous microstructure with a high percentage of interconnected micropores that promote the ingrowth of osteogenic cells and vessels, making graft integration easier and faster. (Int J Periodontics Restorative Dent 2012;32:295–301.)

Full Text PDF File | Order Article


Get Adobe Reader
Adobe Acrobat Reader is required to view PDF files. This is a free program available from the Adobe web site.
Follow the download directions on the Adobe web site to get your copy of Adobe Acrobat Reader.


© 2020 Quintessence Publishing Co, Inc

PRD Home
Current Issue
Ahead of Print
Author Guidelines
Submission Form
Quintessence Home
Terms of Use
Privacy Policy
About Us
Contact Us