LOGIN
 
Share Page:
Back

Volume 25 , Issue 1
January/February 2010

Pages 49–62


Ultraviolet Light Treatment for the Restoration of Age-Related Degradation of Titanium Bioactivity

Norio Hori, DDS, PhD/Takeshi Ueno, DDS, PhD/Takeo Suzuki, DDS/Fuminori Iwasa, DDS, PhD/Masahiro Yamada, DDS, PhD/Wael Att, DDS, Dr Med Dent/Shunsaku Okada, DDS, PhD/Akinori Ohno, DDS/Hideki Aita, DDS, PhD/Katsuhiko Kimoto, DDS, PhD/Takahiro Ogawa, DDS, PhD


PMID: 20209187

Purpose: To examine the bioactivity of differently aged titanium (Ti) disks and to determine whether ultraviolet (UV) light treatment reverses the possible adverse effects of Ti aging. Materials and Methods: Ti disks with three different surface topographies were prepared: machined, acid-etched, and sandblasted. The disks were divided into three groups: disks tested for biologic capacity immediately after processing (fresh surfaces), disks stored under dark ambient conditions for 4 weeks, and disks stored for 4 weeks and treated with UV light. The protein adsorption capacity of Ti was examined using albumin and fibronectin. Cell attraction to Ti was evaluated by examining migration, attachment, and spreading behaviors of human osteoblasts on Ti disks. Osteoblast differentiation was evaluated by examining alkaline phosphatase activity, the expression of bone-related genes, and mineralized nodule area in the culture. Results: Four-week-old Ti disks showed ≤ 50% protein adsorption after 6 hours of incubation compared with fresh disks, regardless of surface topography. Total protein adsorption for 4-week-old surfaces did not reach the level of fresh surfaces, even after 24 hours of incubation. Fifty percent fewer human osteoblasts migrated and attached to 4-week-old surfaces compared with fresh surfaces. Alkaline phosphatase activity, gene expression, and mineralized nodule area were substantially reduced on the 4-week-old surfaces. The reduction of these biologic parameters was associated with the conversion of Ti disks from superhydrophilicity to hydrophobicity during storage for 4 weeks. UV-treated 4-week-old disks showed even higher protein adsorption, osteoblast migration, attachment, differentiation, and mineralization than fresh surfaces, and were associated with regenerated superhydrophilicity. Conclusions: Time-related degradation of Ti bioactivity is substantial and impairs the recruitment and function of human osteoblasts as compared to freshly prepared Ti surfaces, suggesting a “biologic aging”-like change of Ti. UV treatment of aged Ti, however, restores and even enhances bioactivity, exceeding its innate levels. Int J Oral Maxillofac Implants 2010;25:49–62


Full Text PDF File | Order Article

 

 
Get Adobe Reader
Adobe Acrobat Reader is required to view PDF files. This is a free program available from the Adobe web site.
Follow the download directions on the Adobe web site to get your copy of Adobe Acrobat Reader.

 

© 2014 Quintessence Publishing Co, Inc JOMI Home
Current Issue
Ahead of Print
Archive
Author Guidelines
About
Accepted Manuscripts
Submission Form
Submit
Reprints
Permission
Advertising
Quintessence Home
Terms of Use
Privacy Policy
About Us
Contact Us
Help