LOGIN
 
Share Page:
Back

Volume 4 , Issue 4
Winter 1989

Pages 333-340


Numerical Investigations of the Influence of Implant Shape on Stress Distribution in the Jaw Bone

D. Siegele, Dr-lng/U. Soltész, Dr-lng


PMID: 2639862

The stress distribution generated in the surrounding jaw bone was calculated and compared for different types of dental implants (cylindrical, conical, stepped, screw-shaped, hollow cylindrical) by means of the finite-element method. Both a fixed bond and a pure contact without friction between implant and bone were considered as interface conditions. The results demonstrate that different implant shapes lead to significant variations in stress distributions in the bone. In particular, implant surfaces with very small radii of curvature (conical) or geometric discontinuities (stepped) imply distinctly higher stresses than smoother shapes (cylindrical, screw-shaped). Moreover, a fixed bond between implant and bone in the medullary region (as may be obtained with a bioactive coating) will be advantageous for the stress delivered to bone, since it produces a more uniform stress distribution than does a pure contact. (INT J ORAL MAXILLOFAC IMPLANTS 1989;4:333-340.)

Key words: bone resorption, dental implants, finite-element method, stress distribution


Full Text PDF File | Order Article

 

 
Get Adobe Reader
Adobe Acrobat Reader is required to view PDF files. This is a free program available from the Adobe web site.
Follow the download directions on the Adobe web site to get your copy of Adobe Acrobat Reader.

 

© 2014 Quintessence Publishing Co, Inc JOMI Home
Current Issue
Ahead of Print
Archive
Author Guidelines
About
Accepted Manuscripts
Submission Form
Submit
Reprints
Permission
Advertising
Quintessence Home
Terms of Use
Privacy Policy
About Us
Contact Us
Help