LOGIN
 
Share Page:
Back

Volume 23 , Issue 6
November/December 2008

Pages 10631070


Histomorphometric Evaluation of Natural Mineral Combined with a Synthetic Cell-binding Peptide (P-15) in Critical-size Defects in the Rat Calvaria

Zvi Artzi, DMD/Avital Kozlovsky, DMD/Carlos E. Nemcovsky, DMD/Ofer Moses, DMD/Haim Tal, DMD, PhD/Michael D. Rohrer, DDS, MS/Hari S. Prasad, BS, MDT/Miron Weinreb, DMD


PMID: 19216275

Purpose: The objective of this study was to histomorphometrically evaluate the synthetic peptide analog P-15 bound to anorganic bovine mineral (Pepgen/P15) in critical-size defects in the rat calvaria. Materials and Methods: A 5-mm-diameter critical-size defect was prepared in 48 rat skulls and divided into 4 equal groups: Pepgen/P15 particles covered by a membrane, Pepgen/P15 particles uncovered, nongrafted membrane-protected sites, and nongrafted uncovered control sites. At 12 weeks, histomorphometric measurements were made of the percentage area of newly formed bone and residual particles, the length of internal and external bone bridging, and linearly, the regenerated marginal and central total tissue augmentation height. Results: Nongrafted, membrane-protected sites gained 60.6% of newly formed bone, followed by 50.6% and 44.2% (P < .05 versus membrane only) at the grafted covered and uncovered sites, respectively. All experimental sites contained significantly (P < .005) more bone than did control sites (19.9%). In both types of grafted sites, the percentage area of Pepgen/P15 particles was similar. Mean internal and external length of bone bridging at nongrafted membrane-protected sites (76.7% and 71.2%, respectively) was significantly greater (P < .005) than that of the grafted covered (43.95% and 51.8%, respectively), grafted uncovered (28.7% and 23.9%, respectively), and control (28% and 25.5%, respectively) groups, except for internal bone bridging in the grafted covered sites. Regenerated marginal and central augmentation heights (0.92 mm and 1.02 mm, respectively) were greatest in the grafted covered group, followed by the nongrafted membrane-protected (0.88 mm and 0.51 mm, respectively), and grafted uncovered (0.89 mm and 0.12 mm, respectively) groups, all of which were significantly greater (P < .001) than the control group (0.63 mm and 0.04 mm, respectively). Conclusion: While anorganic bovine mineral/cell-binding peptide contributes in volume, membrane application significantly increases the amount of bone regeneration. Int J Oral Maxillofac Implant 2008;23:10631070. Key words: bovine bone mineral, cell-binding peptide, critical-size defect, guided bone regeneration, histomorphometry, PepGen/P-15


Full Text PDF File | Order Article

 

 
Get Adobe Reader
Adobe Acrobat Reader is required to view PDF files. This is a free program available from the Adobe web site.
Follow the download directions on the Adobe web site to get your copy of Adobe Acrobat Reader.

 

© 2014 Quintessence Publishing Co, Inc JOMI Home
Current Issue
Ahead of Print
Archive
Author Guidelines
About
Accepted Manuscripts
Submission Form
Submit
Reprints
Permission
Advertising
Quintessence Home
Terms of Use
Privacy Policy
About Us
Contact Us
Help