LOGIN
 
Share Page:
Back

Volume 23 , Issue 4
July/August 2008

Pages 623–630


The Influence of Abutment Angulation on Micromotion Level for Immediately Loaded Dental Implants: A 3-D Finite Element Analysis

Hung-Chan Kao, PhD/Yih-Wen Gung, DDS/Tai-Foong Chung, DDS/Ming-Lun Hsu, DDS, Dr Med Dent


PMID: 18807557

Purpose: To investigate the micromotion between the implant and surrounding bone caused by the implementation of an angled abutment for an immediately loaded single dental implant located in the anterior maxilla. Materials and Methods: A simplified half premaxillary bone model was fabricated. The dimension of the alveolar ridge was adopted from a dry human skull. Based on Brånemark protocol for Mk IV implants in type-3 bone, an immediate loading model was developed by press-fitting a 4-mm-diameter cylinder implant into a 3.15-mm osteotomy site in a numeric model. Material properties were assigned to the simulated model, and the model was meshed. A bite force of 89 N was applied to the tops of the 0-degree, 15-degree, and 25-degree angled abutments at a 120-degree angle to the abutment long axis. The micromotion between the bone-implant interfaces was calculated using ANSYS 9.0 software featuring a nonlinear contact algorithm. Results: The micromotion values for 15-degree and 25-degree angled abutments were 119% and 134%, respectively, compared to the corresponding values for straight abutments. Compared to straight abutments, the 25-degree abutments resulted in increased maximum von Mises stresses to a level of 18%. Most of the stresses were concentrated within the cortical bone around the neck of the implants. Conclusion: Within the limits of the present finite element analysis study, abutment angulation up to 25 degrees can increase the stress in the peri-implant bone by 18% and the micromotion level by 30%. Int J Oral Maxillofac Implants 2008;23:623–630

Key words: angled abutment, finite element analysis, immediate loading, micromotion


Full Text PDF File | Order Article

 

 
Get Adobe Reader
Adobe Acrobat Reader is required to view PDF files. This is a free program available from the Adobe web site.
Follow the download directions on the Adobe web site to get your copy of Adobe Acrobat Reader.

 

© 2014 Quintessence Publishing Co, Inc JOMI Home
Current Issue
Ahead of Print
Archive
Author Guidelines
About
Accepted Manuscripts
Submission Form
Submit
Reprints
Permission
Advertising
Quintessence Home
Terms of Use
Privacy Policy
About Us
Contact Us
Help