LOGIN
 
Share Page:
Back

Volume 23 , Issue 1
January/February 2008

Pages 5764


Biomechanical Response of Implant Systems Placed in the Maxillary Posterior Region Under Various Conditions of Angulation, Bone Density, and Loading

Chun-Li Lin, MS, PhD/Jen-Chyan Wang, DDS, MS/Lance C. Ramp, DMD, PhD/Perng-Ru Liu, DDS, MS, DMD


PMID: 18416413

Purpose: The aim of this study was to determine the relative contribution of changes in implant system, position, bone type, and loading condition on the biomechanical response of a single-unit implant-supported restoration using nonlinear 3-dimensional finite element analysis (3D FEA). Materials and Methods: FEA models of a single-unit (crown) restoration supported by the Frialit-2 implant and MH-6 abutment or the Straumann standard implant with the Straumann solid abutment were used. Each system was analyzed by FEA with both straight and 20-degree angled abutments. Simulated implant placement was performed in the maxillary premolar area with 3 variations in implant orientation relative to the residual ridge. Analysis of each orientation was conducted for each of 4 bone quality types described by Lekholm and Zarb, with lateral and axial loading conditions imposed. The effect of each variable was expressed as a percentage of the total sum of squares as computed using analysis of variance. Results: Larger strain values were noted in cortical bone with lateral force and the Frialit-2 system. Bone strain increased with decreasing bone density and was affected primarily by bone quality. Implant stress was influenced mainly by implant position. Conclusions: Better stress/strain distribution is possible when implants are placed along the axis of loading with multiple areas of cortical contact. The Straumann solid abutment performed better as a force-transmission mechanism. Int J Oral Maxillofac Implants 2008;23:5764

Key words: abutment-implant connection, biomechanics, bone type, finite element analysis, implant placement


Full Text PDF File | Order Article

 

 
Get Adobe Reader
Adobe Acrobat Reader is required to view PDF files. This is a free program available from the Adobe web site.
Follow the download directions on the Adobe web site to get your copy of Adobe Acrobat Reader.

 

© 2014 Quintessence Publishing Co, Inc JOMI Home
Current Issue
Ahead of Print
Archive
Author Guidelines
About
Accepted Manuscripts
Submission Form
Submit
Reprints
Permission
Advertising
Quintessence Home
Terms of Use
Privacy Policy
About Us
Contact Us
Help