LOGIN
 
Share Page:
Back

Volume 22 , Issue 4
July/August 2007

Pages 542550


Effect of Chemically Modified Titanium Surfaces on Protein Adsorption and Osteoblast Precursor Cell Behavior

Jiri Protivinsky / Mark Appleford, PhD / Jakob Strnad, PhD / Ales Helebrant, PhD / Joo L. Ong, PhD


PMID: 17929514

Purpose: To investigate the effects of different chemically modified titanium surfaces on protein adsorption and the osteoblastic differentiation of human embryonic palatal mesenchymal (HEPM) cells. Materials and Methods: Three different surfaces were evaluated. The first, a machined surface (Ti-M), was considered a control. The second surface was acid etched (Ti-AE). The third surface was prepared by exposing the Ti-AE samples to sodium hydroxide (NaOH) solution (Ti-AAE). The surface characteristics of chemically modified titanium were investigated by means of scanning electron microscopy (SEM), Fourier transform infrared spectroscopy (FTIR), and profilometry. To evaluate the production of biomarkers, commercial kits were utilized. Results: Surface composition and morphology affected the kinetics of protein adsorption. Ti-AE surfaces manifested a greater affinity for fibronectin adsorption compared to Ti-M or Ti-AAE surfaces. It was observed that Ti-AE and Ti-AAE surfaces promoted significantly greater cell attachment compared to Ti-M surfaces. Statistically significant differences were also observed in the expression of alkaline phosphatase (ALP) activity, osteocalcin, and osteopontin on all 3 titanium surfaces. ALP activity and osteocalcin production up to day 12 suggested that differentiation of the cells into osteoblasts had occurred and that cells were expressing a bone-forming phenotype. Conclusions: It was thus concluded from this study that surface morphology and composition play a critical role in enhancing HEPM cell proliferation and differentiation into osteoblast cells. (More than 50 references) Int J Oral Maxillofac Implants 2007; 22:542550

Key words: cell attachment, cell proliferation, differentiation and mineralization, fibronectin, osteoblast precursor cells, protein adsorption


Full Text PDF File | Order Article

 

 
Get Adobe Reader
Adobe Acrobat Reader is required to view PDF files. This is a free program available from the Adobe web site.
Follow the download directions on the Adobe web site to get your copy of Adobe Acrobat Reader.

 

© 2014 Quintessence Publishing Co, Inc JOMI Home
Current Issue
Ahead of Print
Archive
Author Guidelines
About
Accepted Manuscripts
Submission Form
Submit
Reprints
Permission
Advertising
Quintessence Home
Terms of Use
Privacy Policy
About Us
Contact Us
Help