LOGIN
 
Share Page:
Back

Volume 21 , Issue 5
September/October 2006


Radiographic Evaluation of Marginal Bone Level Around Implants with Different Neck Designs After 1 Year

Young-Kyu Shin, DDS / Chong-Hyun Han, DDS, MSD, PhD / Seong-Joo Heo, DDS, MSD, PhD / Sunjai Kim, DDS, MS / Heoung-Jae Chun, PhD


PMID: 17066642

Purpose: To evaluate the influence of macro- and microstructure of the implant surface at the marginal bone level after functional loading. Materials and Methods: Sixty-eight patients were randomly assigned to 1 of 3 groups. The first group received 35 implants with a machined neck (Ankylos); the second group, 34 implants with a rough-surfaced neck (Stage 1); and the third, 38 implants with a rough-surfaced neck with microthreads (Oneplant). Clinical and radiographic examinations were conducted at baseline (implant loading) and 3, 6, and 12 months postloading. Two-way repeated analysis of variance (ANOVA) was used to test the significance of marginal bone change of each tested group at baseline, 3, 6, and 12 month follow-ups and 1-way ANOVA was also used to compare the bone loss of each time interval within the same implant group (P < .05). Results: At 12 months, significant differences were noted in the amount of alveolar bone loss recorded for the 3 groups (P < .05). The group with the rough-surfaced microthreaded neck had a mean crestal bone loss of 0.18 0.16 mm; the group with the rough-surfaced neck, 0.76 0.21 mm; and the group with the machined neck, 1.32 0.27 mm. In the rough-surfaced group and the rough-surfaced microthreaded group, no statistically significant changes were observed after 3 months, whereas the machined-surface group showed significant bone loss for every interval (P < .05). Discussion: To minimize marginal bone loss, in addition to the use of a rough surface at the marginal bone level, a macroscopic modification such as the addition of microthreads could be recommended. A rough surface and microthreads at the implant neck not only reduce crestal bone loss but also help with early biomechanical adaptation against loading in comparison to the machined neck design. Conclusion: A rough surface with microthreads at the implant neck was the most effective design to maintain the marginal bone level against functional loading. (Comparative Cohort) Int J Oral Maxillofac Implants 2006;20:789794

Key words: machined neck, marginal bone level, microthreads, rough surface


Full Text PDF File | Order Article

 

 
Get Adobe Reader
Adobe Acrobat Reader is required to view PDF files. This is a free program available from the Adobe web site.
Follow the download directions on the Adobe web site to get your copy of Adobe Acrobat Reader.

 

© 2014 Quintessence Publishing Co, Inc JOMI Home
Current Issue
Ahead of Print
Archive
Author Guidelines
About
Accepted Manuscripts
Submission Form
Submit
Reprints
Permission
Advertising
Quintessence Home
Terms of Use
Privacy Policy
About Us
Contact Us
Help