Share Page:

Volume 13 , Issue 6
November/December 1998

Pages 837–844

Hot Isostatic Pressing–Processed Hydroxyapatite-Coated Titanium Implants: Light Microscopic and Scanning Electron Microscopy Investigations

Henrik Wie, DDS, MSD, PhD, Håkon Herø, PhD, Tore Solheim, DDS, PhD.

PMID: 9857595

Hot isostatic pressing (HIP) was used in a new procedure to produce hydroxyapatite (HA) coatings on a commercially pure titanium (cpTi) substrate for osseous implantation. Eighteen HIP-processed HA-coated implants were placed in the inferior border of the mandibles in 2 Labrador retriever dogs and left submerged for 3 months. As control specimens, 12 sandblasted cpTi implants were placed in the same mandibles and, to compare the bone reaction, 2 additional plasma-sprayed HA-coated implants (Integral) were placed. Tissue reactions at the bony interfaces of the implants were studied in ground sections with the implants in situ, using ordinary, fluorescent, and polarized light microscopy and scanning electron microscopy (SEM). The HIP-processed HA coatings displayed an increased density in light microscopy and SEM as compared to plasma-sprayed coatings. Direct bone-implant contact was found in all 3 types of surfaces. However, the production of new bone was far more abundant for the HA-coated implants than for sandblasted cpTi implants. The presence of bone-forming and bone-resorbing cells indicated active bone remodeling in the interface area at 3 months after implant placement. The present results support the view that epitaxial bone growth may occur from the HA-coated implant surface. It was concluded that the increased density of the present HIP-processed HA material does not reduce the bioactive properties of the coatings. (INT J ORAL MAXILLOFAC IMPLANTS 1998;13:837–844) Key words: experimental study, hydroxyapatite implants, light microscopy, scanning electron microscopy, titanium implants

Full Text PDF File | Order Article


Get Adobe Reader
Adobe Acrobat Reader is required to view PDF files. This is a free program available from the Adobe web site.
Follow the download directions on the Adobe web site to get your copy of Adobe Acrobat Reader.


© 2017 Quintessence Publishing Co, Inc JOMI Home
Current Issue
Ahead of Print
Author Guidelines
Accepted Manuscripts
Submission Form
Quintessence Home
Terms of Use
Privacy Policy
About Us
Contact Us