LOGIN
 
Share Page:
Back

Volume 36 , Issue 6
November/December 2021

Pages 11111120


Different Implant Subgingival Depth Affects the Trueness and Precision of the 3D Dental Implant Position: A Comparative in Vitro Study Among Five Digital Scanners and a Conventional Technique

Kan Laohverapanich, DDS/Penporn Luangchana, DDS, MSc/Chuchai Anunmana, DDS, PhD/Suchaya Pornprasertsuk-Damrongsri, DDS, MS, PhD


PMID: 34919607
DOI: 10.11607/jomi.9014

Purpose: The aim of this study was to investigate the effect of implant subgingival depth on the trueness and precision of the 3D implant position, and the effect of digital implant impression techniques on the 3D implant position. Materials and Methods: Three resin master models were created with implant analogs submerged 3, 6, and 9 mm from the gingival margin. Four intraoral scanners (TRIOS, DWIO, Omnicam, and TruDef), one laboratory scanner (E3), and a conventional impression technique were used to take impressions of the master models, which resulted in six test models for each depth. These six impression techniques were performed six times for precision assessment. The master models were sent for high-powered micro-focused computed tomography as the gold standard control group. The scan body positions of the test models and their control models were superimposed using reverse-engineering software. The 3D distortion of the implant position in each comparison was measured by linear distortion (dx, dy, dz) and calculated as the global linear distortion (dR). Results: The trueness of the mean dR values at the 3-mm, 6-mm, and 9-mm implant depths was 99 μm, 60.6 μm, and 107 μm, respectively. The least significant difference test of the impression system showed that all the digital impression techniques except the DWIO scanner had better trueness than the conventional impression technique. The 6-mm implant depth exhibited a significantly lower 3D distortion of the implant position than those of the 3-mm and 9-mm implant depths. The E3 scanner had the highest precision, while the conventional impression technique had the lowest precision. All the intraoral scanners except the DWIO scanner showed better precision than the conventional impression technique. Conclusion: Most of the intraoral scanners had better trueness and precision than the conventional impression technique for up to 6 mm of implant subgingival depth.


Full Text PDF File | Order Article

 

 
Get Adobe Reader
Adobe Acrobat Reader is required to view PDF files. This is a free program available from the Adobe web site.
Follow the download directions on the Adobe web site to get your copy of Adobe Acrobat Reader.

 

© 2022 Quintessence Publishing Co, Inc JOMI Home
Current Issue
Ahead of Print
Archive
Author Guidelines
About
Accepted Manuscripts
Submission Form
Submit
Reprints
Permission
Advertising
Quintessence Home
Terms of Use
Privacy Policy
About Us
Contact Us
Help