Share Page:

Volume 34 , Issue 6
November/December 2019

Pages 13791388

Do Chlorhexidine and Probiotics Solutions Provoke Corrosion of Orthodontic Mini-implants? An In Vitro Study

Andrej Pavlic, DDS/Fabio Perissinotto, PhD/Gianluca Turco, PhD/Luca Contardo, Prof, DDS/Stjepan Spalj, Prof, DDS

PMID: 31711079
DOI: 10.11607/jomi.7392

Purpose: The aim of this study was to explore the surface roughness and hardness of the implant head of orthodontic mini-implants made from different alloys before and after their in vitro exposure to agents for prevention of gingivitis, mucositis, and peri-implantitis: chlorhexidine and probiotics. Materials and Methods: Three types of commercially available mini-implants were tested: 316 stainless steel, titanium Grade 5, and titanium Grade 23 (both Ti6Al4V alloys with the same atomic weight percentage of Ti, Al, and V, with the difference being in maximal reduction of O2 in Grade 23 to 0.13% of atomic weight). They were immersed in three experimental solutions: artificial saliva, saliva with probiotic bacteria Lactobacillus reuteri, and saliva with oral antiseptic chlorhexidine (CHX). Samples were immersed for 28 days, thermocycled, then stored in an incubator at 37C. Surface roughness and microhardness on five samples of each of the three implant types were measured by atomic force microscopy and the Vickers method, respectively. Results: Exposure of titanium implant Grade 5 to probiotics significantly increased roughness compared with other media (P < .005). Exposure to CHX significantly increased the roughness of steel implants (P < .05). Neither saliva, probiotic, nor CHX altered microhardness of titanium implants significantly. In steel implants, the exposure to CHX and probiotics decreased microhardness compared with unexposed implants (P < .031), but not in comparison to saliva. Conclusion: Probiotics seem to increase roughness of titanium mini-implants, while CHX seems to increase roughness of steel mini-implants. Only stainless steel implants had an altered, decreased hardness after exposure to CHX, although the same was found after their exposure to saliva. For patients undergoing orthodontic treatment with temporary anchorage units, CHX could be recommended for titanium, and probiotics for stainless steel mini-implants in oral-hygiene maintenance.

Full Text PDF File | Order Article


Get Adobe Reader
Adobe Acrobat Reader is required to view PDF files. This is a free program available from the Adobe web site.
Follow the download directions on the Adobe web site to get your copy of Adobe Acrobat Reader.


© 2022 Quintessence Publishing Co, Inc JOMI Home
Current Issue
Ahead of Print
Author Guidelines
Accepted Manuscripts
Submission Form
Quintessence Home
Terms of Use
Privacy Policy
About Us
Contact Us