LOGIN
 
Share Page:
Back

Volume 33 , Issue 5
September/October 2018

Pages 1033–1040


Control Variable Implants Improve Interpretation of Surface Modification and Implant Design Effects on Early Bone Responses: An In Vivo Study

Jung-Yoo Choi, DDS, MSD, PhD/Seok-Hyung Kang, DDS, MSD/Hae-Young Kim, DDS, PhD/In-Sung Luke Yeo, DDS, MSD, PhD


PMID: 30231089
DOI: 10.11607/jomi.6436

Purpose: This in vivo study used control variable implants to compare early bone responses in fluoride-modified (F-mod) and hydrophilic, sandblasted, large-grit, acid-etched (modSLA) surface implants that differed in implant design. Materials and Methods: Four different types of implants (n = 24) were prepared: F-mod surface with Astra Tech implant design; modSLA surface with Straumann implant design; sandblasted, large-grit, acid-etched (SLA) surface with Astra Tech design; and SLA surface with Straumann implant design. Scanning electron microscopy, confocal laser scanning microscopy, and x-ray photoelectron spectroscopy were performed to assess implant surface characteristics. Four implants from each implant type were inserted in the tibiae of four rabbits that were sacrificed 10 days after surgery. Bone-to-implant contact (BIC) and bone area (BA) were measured to evaluate early bone responses. Analysis of variance with Tukey’s multiple comparison method was used for the histomorphometric data to find any significant difference. The surface characteristic-related data were analyzed using the Kruskal-Wallis test. The level of significance was .05 in statistical analyses. Results: No significant differences in BIC and BA were found among the modified surfaces (P > .05), whereas significant differences were found in surface topography and surface chemistry. The different designs showed no significant effects on early bone responses when identical surface modifications were applied (P > .05). Conclusion: F-mod and modSLA surfaces showed no significant differences in early bone responses. Furthermore, the implant design had no influence on the bone response. This in vivo experimental model will help improve the evaluation of surface modification factors by allowing an independent estimation of one variable (surface modification) against a constant (implant design).


Full Text PDF File | Order Article

 

 
Get Adobe Reader
Adobe Acrobat Reader is required to view PDF files. This is a free program available from the Adobe web site.
Follow the download directions on the Adobe web site to get your copy of Adobe Acrobat Reader.

 

© 2019 Quintessence Publishing Co, Inc JOMI Home
Current Issue
Ahead of Print
Archive
Author Guidelines
About
Accepted Manuscripts
Submission Form
Submit
Reprints
Permission
Advertising
Quintessence Home
Terms of Use
Privacy Policy
About Us
Contact Us
Help