LOGIN
 
Share Page:
Back

Volume 33 , Issue 5
September/October 2018

Pages 10891096


Sinus Floor Elevation Using the Lateral Approach and Window Repositioning and a Xenogeneic Bone Substitute as a Grafting Material: A Histologic, Histomorphometric, and Radiographic Analysis

Georges Tawil, DDS, DSc Od/Mike Barbeck/Ronald Unger, PhD/Peter Tawil, DDS, MSc/Franck Witte, MD


PMID: 29894551
DOI: 10.11607/jomi.6226

Purpose: Sinus floor elevation using the lateral approach and bone window repositioning and a xenogeneic bone substitute (Cerabone) has been well documented clinically. The purpose of this histologic and histomorphometric study was to determine the fate of the window, its contributing role in the healing process, and the osseoconductivity and resorption potential of the high-temperature sintered bovine bone used, as well as to correlate the histomorphometric results with sinus depth and lateral wall thickness as determined on cone beam computed tomography (CBCT). Materials and Methods: Thirty biopsy specimens were harvested from the lateral side of the maxilla of patients operated on for sinus floor elevation and implant placement at two postoperative periods: early, group 1 (mean: 5.73 0.44 months); and late, group 2 (mean: 8.68 1.76 months). Sinus depth and lateral wall thickness were determined on CBCT and correlated to graft maturation. Results: The repositioned bone window was microscopically detectable in both study groups and looked well integrated. Bone was found growing out of the repositioned window toward the center of the graft, most often forming a trabecular network independently from the bone matrix, which is in favor of osteogenic potential of the window. Also, newly built bone was found directly attached to the surfaces of the window, indicating bone growth via osseoconduction. Repositioned window sides showed signs of low-grade inflammation. Active osteoclasts were only found to be associated with the newly built bone matrix, hinting at an active bone remodeling process. No signs of biodegradation or remodeling of the window were detected using the tartrate-resistant acid phosphatase (TRAP) technique. The histomorphometric analysis of the tissue distribution showed similar values of newly formed bone in group 1 (22.77% 5.89%) and in group 2 (26.15% 11.18%) and connective tissue values in both study groups (42.29% 8.98% for group 1 vs 46.03% 5.84% for group 2). No significant differences were found between group 1 (34.94% 7.10%) and group 2 (27.82% 11.97%) for xenogeneic bone substitute values. Statistically significant differences were only found between connective tissue values and newly built bone values (P < .01 and P < .001, respectively). Furthermore, a significant difference was found between connective tissue values and that of bone substitute up to 12 months (P < .01). No significant correlation was found between sinus depth and lateral window thickness and histomorphometric results. Conclusion: The re positioned window technique appears to be a good osteoconductive barrier for bone formation. Its osteogenic potential needs to be confirmed immunochemically. High-temperature sintered bovine bone proved to be an effective slowly resorbing osseoconductive material.


Full Text PDF File | Order Article

 

 
Get Adobe Reader
Adobe Acrobat Reader is required to view PDF files. This is a free program available from the Adobe web site.
Follow the download directions on the Adobe web site to get your copy of Adobe Acrobat Reader.

 

© 2019 Quintessence Publishing Co, Inc JOMI Home
Current Issue
Ahead of Print
Archive
Author Guidelines
About
Accepted Manuscripts
Submission Form
Submit
Reprints
Permission
Advertising
Quintessence Home
Terms of Use
Privacy Policy
About Us
Contact Us
Help