Share Page:

Volume 31 , Issue 1
January/February 2016

Pages 223231

Physical Profile and Impact of a Calcium-Incorporated Implant Surface on Preosteoblastic Cell Morphologic and Differentiation Parameters: A Comparative Analysis

Marco Lollobrigida, DDS/Luca Lamazza, DMD, PhD/Cristina Capuano, PhD/Giuseppe Formisano, AS/Emanuele Serra, PhD/Domenica Laurito, DDS/Maddalena Romanelli, MS/Agnese Molinari, MS/Alberto De Biase, MD, DDS

PMID: 26800182
DOI: 10.11607/jomi.4247

Purpose: To assess and compare topographic features and preosteoblastic cell responses of a new hydrothermally treated, calcium-incorporated surface against other commercially available implant surfaces. Materials and Methods: Four different surfaces were the subject of comparison in this study: machined (MC), resorbable blast media (RBM), sandblasted/large-grit/acid-etched (SLA), and calcium-incorporated SLA (Ca-SLA). Surface morphology and roughness were first characterized by scanning electron microscope (SEM) and white light interferometer, respectively. Preosteoblastic MC3T3-E1 cells were then cultured on the titanium surfaces. Cell morphology was observed at 24 hours, 48 hours, 7 days, and 15 days by SEM; differentiation was assessed at 7, 11, and 15 days by assaying alkaline phosphatase (ALP) activity and osteocalcin (OCN) levels. Results: Surface characterization revealed nanotopographic features on Ca-SLA. At topographic analysis, SLA and Ca-SLA showed similar roughness values. Significant differences in cell differentiation parameters were found only at 15 days between the SLA surfaces (both Ca-incorporated and nonincorporated) and MC. Conclusion: Collectively, this study demonstrated that hydrothermal treatment determines the formation of nanotopography without altering the SLA microtopography. Moreover, Ca-SLA and SLA induce MC3T3-E1 cell differentiation at comparable levels.

Full Text PDF File | Order Article


Get Adobe Reader
Adobe Acrobat Reader is required to view PDF files. This is a free program available from the Adobe web site.
Follow the download directions on the Adobe web site to get your copy of Adobe Acrobat Reader.


© 2020 Quintessence Publishing Co, Inc JOMI Home
Current Issue
Ahead of Print
Author Guidelines
Accepted Manuscripts
Submission Form
Quintessence Home
Terms of Use
Privacy Policy
About Us
Contact Us