LOGIN
 
Share Page:
Back

Volume 30 , Issue 3
May/June 2015

Pages e30-e42


Influence of Alveolar Bone Loss and Different Alloys on the Biomechanical Behavior of Internal-and External-Connection Implants: A Three-Dimensional Finite Element Analysis


Alexander Tsouknidas, Dr Eng/Evdokia Lympoudi, DDS/Konstantinos Michalakis, DDS, MSc, PhD/Dimitrios Giannopoulos, DDS/Nikolaos Michailidis, Dr Eng/Argirios Pissiotis, DDS, MS, PhD/Dimitrios Fytanidis, BSc, MSc/Dimitrios Kugiumtzis, PhD


PMID: 26009924
DOI: 10.11607/jomi.3814

Purpose: The purpose of this study was to evaluate the stress distribution during application of occlusal loads to maxillary anterior single external- and internal-connection implant-supported restorations with different amounts of bone loss and with the use of different metal alloys for restorations and fixation screws. Materials and Methods: Models of external- and internal-connection implants, corresponding abutments/crowns, and fixation screws were developed. These models were then imported into finite element analysis software to study the impact of forces on different implant connections and materials. Each prosthesis was subjected to a 200-N compressive shear force applied at 130 degrees relative to the long axis of the implant. The materials were considered linear, isotropic, and homogenous. The parameters changed for each connection type included: bone resorption in relation to the prosthetic platform (no, 2 mm, or 4 mm of resorption); alloys of the restorations (nonprecious vs precious); and alloys of the abutment screws (titanium vs gold). Von Mises stresses were used to display the stress in five models: implant, restoration, screw, cancellous bone, and cortical bone. Results: Statistically significant differences in the stresses of all involved structures occurred when the bone level decreased by 2 mm and by 4 mm. The connection type contributed to statistically significant differences in the stresses in both the restoration and the screw. The alloy type resulted in statistically significant differences in the implant, the superstructure, and the cortical bone stresses. Conclusion: As bone resorbed, the stresses generated within the internal-connection implant were greater than those generated in the external-connection implant. The same findings applied for the restoration and for cancellous and cortical bone. The stresses generated in the fixation screw were greater in the external-connection implant than in the internal-connection implant for all bone resorption scenarios.


Full Text PDF File | Order Article

 

 
Get Adobe Reader
Adobe Acrobat Reader is required to view PDF files. This is a free program available from the Adobe web site.
Follow the download directions on the Adobe web site to get your copy of Adobe Acrobat Reader.

 

© 2017 Quintessence Publishing Co, Inc JOMI Home
Current Issue
Ahead of Print
Archive
Author Guidelines
About
Accepted Manuscripts
Submission Form
Submit
Reprints
Permission
Advertising
Quintessence Home
Terms of Use
Privacy Policy
About Us
Contact Us
Help