LOGIN
 
Share Page:
Back

Volume 30 , Issue 3
May/June 2015

Pages 512-518


Biochemical Responses of Anodized Titanium Implants with a Poly(lactide-co-glycolide)/Bone Morphogenic Protein-2 Submicron Particle Coating. Part 1: An In Vitro Study

Soo-Yeon Yoo, DDS, MSD/Seong-Kyun Kim, DDS, MSD, PhD/Seong-Joo Heo, DDS, MSD, PhD/Jai-Young Koak, DDS, MSD, PhD/Joo-Hee Lee, DDS, MSD, PhD/Ji-Man Park, DDS, PhD


PMID: 26009901
DOI: 10.11607/jomi.3701a

Purpose: This study was conducted to examine the effects of coating poly(D,L-lactide-co-glycolide) (PLGA)/recombinant human bone morphogenetic protein-2 (rhBMP-2) submicron particles by electrospray onto titanium (Ti) implants on the proliferation and differentiation capacity of mesenchymal stem cells. In addition, the duration of rhBMP-2 release was investigated. Materials and Methods: Ti disks were fabricated and divided into four groups as follows. Group C (control) was anodized at 300 V, group P was anodized and then coated with 0.2% PLGA, group B1 was anodized and then coated with PLGA/rhBMP-2 submicron particles at 200 ng per disk, and group B2 was anodized and then coated with PLGA/rhBMP-2 submicron particles at 600 ng per disk. The topography of the PLGA/rhBMP-2–coated Ti surfaces was examined, and proliferation assays, alkaline phosphatase activity tests, and rhBMP-2 releasing tests were conducted in vitro. Results: There was no difference in the roughness of control Ti disks and Ti disks coated with PLGA/rhBMP-2 submicron particles by electrospray. The proliferation of mesenchymal stem cells increased over time; at 7 days, cell proliferation on the Ti disks coated with rhBMP-2 was significantly higher than the other groups. Anodized Ti disks coated with PLGA/rhBMP-2 (groups B1 and B2) released rhBMP-2 for approximately 21 days. In accordance with the amount of rhBMP-2 released from the PLGA/rhBMP-2 construct, the differentiation capacity of mesenchymal stem cells on the PLGA/rhBMP-2–coated disks was increased significantly. Conclusion: Submicron PLGA/rhBMP-2 coating on Ti implants by electrospray facilitated cell proliferation and differentiation, which is important for early healing and integration of implants.


Full Text PDF File | Order Article

 

 
Get Adobe Reader
Adobe Acrobat Reader is required to view PDF files. This is a free program available from the Adobe web site.
Follow the download directions on the Adobe web site to get your copy of Adobe Acrobat Reader.

 

© 2017 Quintessence Publishing Co, Inc JOMI Home
Current Issue
Ahead of Print
Archive
Author Guidelines
About
Accepted Manuscripts
Submission Form
Submit
Reprints
Permission
Advertising
Quintessence Home
Terms of Use
Privacy Policy
About Us
Contact Us
Help