Share Page:

Volume 30 , Issue 1
January/February 2015

Pages e10–e16

Load Limit of Mini-Implants with Reduced Abutment Height Based on Fatigue Fracture Resistance: Experimental and Finite Element Study

Yusuke Toyoshima, DDS/Noriyuki Wakabayashi, DDS, PhD

PMID: 25506647
DOI: 10.11607/jomi.3653

Purpose: The primary objective of this study was to investigate the fracture resistance of experimental mini-implants with a reduced abutment height. The secondary objective was to assess the effects of implant diameter and bone level on the load limit, using finite element simulations. Materials and Methods: Two Ti-6A1-4V 1.8-mm–diameter implants were subjected to monotonic bending testing and fatigue tests incorporating 5 × 106 cycles (ISO 14801): a commercially available implant (c18), and an experimental implant with a reduced abutment height (e18). The load limit was estimated using the finite element models based on the maximum stress at failure in the experiments. For simulations, implants with increased diameters of 2.1 and 2.4 mm were also modeled, and the load limit was estimated for all models in a bone model. Results: In the bending test, e18 revealed a higher mean load at yield stress than c18, and this was attributed to the reduced height of the former. An endurance limit of 140 N was detected for both c18 and e18 in the fatigue test, while the load limit of e18 was higher than that of c18. The estimated load limit increased as the implant diameter or the bone level increased, with the highest value of 510 N observed at a diameter of 2.4 mm. Conclusion: A higher load limit was evident in the experimental mini-implant with a reduced abutment height. The simulations indicated that the load limit increased with increased implant diameter and higher bone levels.

Full Text PDF File | Order Article


Get Adobe Reader
Adobe Acrobat Reader is required to view PDF files. This is a free program available from the Adobe web site.
Follow the download directions on the Adobe web site to get your copy of Adobe Acrobat Reader.


© 2020 Quintessence Publishing Co, Inc JOMI Home
Current Issue
Ahead of Print
Author Guidelines
Accepted Manuscripts
Submission Form
Quintessence Home
Terms of Use
Privacy Policy
About Us
Contact Us