LOGIN
 
Share Page:
Back

Volume 29 , Issue 1
January/February 2014

Pages e107–e116


Sp1-Dependent Regulation of PPARα in Bone Metabolism


Fabian Duttenhoefer, MD/Subrata K. Biswas, PhD/John C. Igwe, PhD/Sebastian Sauerbier, MD, DDS/Angelika Bierhaus, PhD


PMID: 24451878
DOI: 10.11607/jomi.te49

Purpose: Successful repair and regeneration in bone tissue engineering vastly depends on proper interaction between the tissue-engineered construct and the recipient’s immune system. In clinical application, adverse responses to bioartificial implants may result in chronic inflammation and loss of the implant. It is known that prolonged inflammation linked to NF-κB inflammatory pathways inhibits bone-forming activity of osteoblast cells. Contributing to orchestrate inflammatory processes, the ligand-activated transcription factor peroxisome proliferator-activated receptor alpha (PPARα) holds inhibitory effects on NF-κB and CEBβactivity. Sp1, a widely expressed transcription factor, has been linked to PPAR pathways, cellular homeostasis, and responsiveness to environmental perturbation. Formerly not being characterized, the role of PPARα in inflammatory-mediated bone loss requires further investigation. The aim of the present study was to identify regulatory transcription factor binding sites (TFBS) on the PPAR alpha promoter and to assess the role of Sp1 and associated proteins in its regulation. Materials and Methods: In a first set of experiments, polymerase chain reaction assessed the presence of PPARα gene expression in isolated murine bone tissue. Deletion mutagenesis was performed on the human PPARα (hPPARα) promoter gene, and the deletion constructs were transiently transfected to murine osteoblasts to identify important TFBS. PPARα promoter-driven reporter gene expression was monitored in response to overexpression and repression of Sp1 to analyze functional transcription factor recruitment to the PPARα promoter. Results: This study could demonstrate that the full-length hPPARα promoter contains inhibiting promoter regions and that hPPARα basal expression can be significantly increased by deletion mutagensis. Sp1 TFBS proved functional in the regulation of PPARα promoter activity, and the first five Sp1 motifs on the PPARα promoter were sufficient to significantly increase PPARα expression. Additional transient co-transfection experiments could not detect any direct effect of NF-κB/IκB downstream pathway on the regulation of PPARα promoter activity. Taken together, we could demonstrate that Sp1 plays a key role in transcriptional regulation of PPARα promoter activity and gene expression. Conclusion: This study provides further insight on Sp1-dependent PPARα regulatory mechanisms and suggests that Sp1-regulated PPARα expression plays a key role in inflammatory mediated bone loss.


Full Text PDF File | Order Article

 

 
Get Adobe Reader
Adobe Acrobat Reader is required to view PDF files. This is a free program available from the Adobe web site.
Follow the download directions on the Adobe web site to get your copy of Adobe Acrobat Reader.

 

© 2014 Quintessence Publishing Co, Inc JOMI Home
Current Issue
Ahead of Print
Archive
Author Guidelines
About
Accepted Manuscripts
Submission Form
Submit
Reprints
Permission
Advertising
Quintessence Home
Terms of Use
Privacy Policy
About Us
Contact Us
Help