LOGIN
 
Share Page:
Back

Volume 28 , Issue 6
November/December 2013

Pages e440–e450


Osteoblastic Differentiation of Human Stem Cells Derived from Bone Marrow and Periodontal Ligament Under the Effect of Enamel Matrix Derivative and Transforming Growth Factor-Beta


Behzad Houshmand, MS, DDS/Hossein Behnia, DMD/Ahad Khoshzaban, DDS/Golnaz Morad, DDS/Gholamreza Behrouzi, MSc/Seyedeh Ghazaleh Dashti, DDS/Arash Khojasteh, DMD


PMID: 24278943
DOI: 10.11607/jomi.te24

Purpose: To increase the understanding of the applicability of biomaterials and growth factors in enhancing stem cell–based bone regeneration modalities, this study evaluated the effects of enamel matrix derivative (EMD) and recombinant human transforming growth factor-beta (rhTGF-β) on osteoblastic differentiation of human bone marrow mesenchymal stem cells (hBMSCs) as well as human periodontal ligament stem cells (hPDLSCs). Materials and Methods: hBMSCs and hPDLSCs were obtained, and identification of stem cell surface markers was performed according to the criteria of the International Society for Cellular Therapy. Each group of stem cells was separately treated with a serial dilution of EMD (10, 50, and 100 μg/mL) or rhTGF-β (10 ng/mL). Osteoblastic differentiation was examined through in vitro matrix mineralization by alizarin red staining, and mRNA expression of osteopontin and osteonectin was determined by quantitative reverse-transcriptase polymerase chain reaction. hPDLSCs were further assessed for osteocalcin mRNA expression. Stem cells cultured in osteogenic medium were employed as a standard positive control group. Results: In none of the experimental groups were bone-related mRNAs detected subsequent to treatment with EMD for 5, 10, and 15 days. Alizarin red staining on day 21 was negative in EMD-treated BMSC and PDLSC cultures. In rhTGF-β–supplemented BMSC culture, expression of osteonectin mRNA was demonstrated on day 15, which was statistically comparable to the positive control group. Nevertheless, extracellular matrix mineralization was inhibited in both groups of stem cells. Conclusions: Within the limitations of this study, it could be concluded that EMD with a concentration of 10, 50, or 100 μg/mL has no appreciable effect on osteoblastic differentiation of BMSCs and PDLSCs. Application of rhTGF-β increased osteonectin mRNA expression in BMSCs. This finding corroborates the hypothesis that TGF-β might be involved in early osteoblastic maturation.


Full Text PDF File | Order Article

 

 
Get Adobe Reader
Adobe Acrobat Reader is required to view PDF files. This is a free program available from the Adobe web site.
Follow the download directions on the Adobe web site to get your copy of Adobe Acrobat Reader.

 

© 2017 Quintessence Publishing Co, Inc JOMI Home
Current Issue
Ahead of Print
Archive
Author Guidelines
About
Accepted Manuscripts
Submission Form
Submit
Reprints
Permission
Advertising
Quintessence Home
Terms of Use
Privacy Policy
About Us
Contact Us
Help