LOGIN
 
Share Page:
Back

Volume 28 , Issue 2
March/April 2013

Pages e48e56


Biomechanical Evaluation of a Novel Porous-Structure Implant: Finite Element Study


Samroeng Inglam, DDS, PhD/Nattapon Chantarapanich, PhD/Siriwan Suebnukarn, DDS, PhD/Natapoom Vatanapatimakul, BSc/Sedthawatt Sucharitpwatskul, MEng/Kriskrai Sitthiseripratip, DEng


PMID: 23527368
DOI: 10.11607/jomi.1666

Purpose: The biomechanical performance of a novel engineered porous-structure implant (EPSI) with various porosities and a conventional solid-structure implant (CSSI) was investigated and compared. Materials and Methods: The three-dimensional finite element method was applied to titanium dental implant models placed in a block of bone that included both cortical and medullary bone. Five different pore sizes and porosities of the EPSI (58% porosity [PSI-58], 62% porosity [PSI-62], 71% porosity [PSI-71], 75% porosity [PSI-75], and 79% porosity [PSI-79]), were compared with the CSSI. Equivalent von Mises (EQV) stress, strain energy density, and displacement were examined for each implant design. Results: The maximum EQV stresses exhibited in cortical bone of the EPSI models were lower than those of the CSSI model. Higher EPSI porosity tended to increase the EQV stress. The EPSI appeared to share the load with the cortical bone, as evidenced by lower strain energy density in the cortical bone of EPSI models. High values for displacement were observed at the coronal part of the implant in all models. Slight differences in maximum displacement values were seen between EPSI and CSSI models. Conclusion: The EPSI effectively reduced the maximum EQV stress in the cortical bone and enhanced the load-sharing capacity. A significant amount of energy was absorbed by the implant instead of being transferred to the surrounding cortical bone. Varying the porosity of an implant had less effect on implant displacement. Int J Oral Maxillofac Implants 2013;28:e48e56. doi: 10.11607/jomi.1666


Full Text PDF File | Order Article

 

 
Get Adobe Reader
Adobe Acrobat Reader is required to view PDF files. This is a free program available from the Adobe web site.
Follow the download directions on the Adobe web site to get your copy of Adobe Acrobat Reader.

 

© 2014 Quintessence Publishing Co, Inc JOMI Home
Current Issue
Ahead of Print
Archive
Author Guidelines
About
Accepted Manuscripts
Submission Form
Submit
Reprints
Permission
Advertising
Quintessence Home
Terms of Use
Privacy Policy
About Us
Contact Us
Help