Share Page:

Volume 27 , Issue 2
March/April 2012

Pages 329-335

Distribution of Occlusal Forces During Occlusal Adjustment of Dental Implant Prostheses: A Nonlinear Finite Element Analysis Considering the Capacity for Displacement of Opposing Teeth and Implants

Kayo Kasai, DDS/Yoshiyuki Takayama, DDS, PhD/Atsuro Yokoyama, DDS, PhD

PMID: 22442771

Purpose: The purpose of this study was to investigate the influence of occlusal forces (the contractile forces of the masticatory muscles) during occlusal adjustment on the distribution of forces on combinations of implants and teeth during intercuspal clenching by means of finite element analysis. Materials and Methods: Three-dimensional finite element models of the mandible, one with two implants in the molar region and the other with four implants in the premolar and molar regions, were constructed. Linearly elastic material properties were defined for all elements except the periodontal ligament, which was defined as nonlinearly elastic. The temporomandibular joints and antagonists were simplified and replaced with nonlinear springs. Antagonists were assumed to be a natural tooth or an implant and had two- or three-stage displaceability (ie, very high displaceability under tension and when the displacement was smaller than the clearance assumed to be made by occlusal adjustment, but displaceability of the antagonists themselves when the displacement was greater than the clearance). The clearance by occlusal adjustment was decided beforehand with a trial-and-error method so that the occlusal forces were distributed symmetrically under a prescribed load. Each model was evaluated under loads of 100 N, 200 N, and 800 N for the distribution of occlusal forces on the teeth and implants. Results: In the case of occlusal adjustment under the total occlusal force of 40 N, the stress was concentrated at the most posteriorly located implant in all models under all loading conditions. This concentration was reduced in the case of occlusal adjustment under the total occlusal force of 200 N, except under a load of 800 N. Conclusion: Hard biting appeared to be better for occlusal adjustment to avoid overloading of the most posterior implant. Int J Oral Maxillofac Implants 2012;27:329335

Key words: displacement, finite element analysis, implant, mandible, nonlinear, occlusal adjustment

Full Text PDF File | Order Article


Get Adobe Reader
Adobe Acrobat Reader is required to view PDF files. This is a free program available from the Adobe web site.
Follow the download directions on the Adobe web site to get your copy of Adobe Acrobat Reader.


© 2018 Quintessence Publishing Co, Inc JOMI Home
Current Issue
Ahead of Print
Author Guidelines
Submission Form
Quintessence Home
Terms of Use
Privacy Policy
About Us
Contact Us