Share Page:

Volume 26 , Issue 6
November/December 2011

Pages 1256–1266

Wetting Behavior of Dental Implants

Frank Rupp, Dr Rer Nat/Lutz Scheideler, Dr Rer Nat/Mirjam Eichler, MSc/Jürgen Geis-Gerstorfer, Prof Dr Rer Nat

PMID: 22167431

Purpose: Hydrophilicity is gaining increasing interest as a factor that might influence the osseointegration of dental implants. Therefore, in this study the dynamic wetting behavior of currently marketed dental titanium implants was analyzed by tensiometry, and its relationship to surface topography was examined. Materials and Methods: Nine screw-type implant systems from eight manufacturers were evaluated. Dynamic water contact angles were analyzed by tensiometric multiloop Wilhelmy experiments (10 loops, 10 mm/min immersion speed). The wetted length (perimeter) of the immersed samples was estimated by three-dimensional picture profile measurement of the thread height of the respective implant screws. Wettability was quantified by first advancing contact angles. Additionally, static contact angles were determined using the sessile drop technique. All implant surfaces were characterized by scanning electron microscopy (SEM). Contact angle data were subjected to one-way analysis of variance followed by the Student t test. Results: SEM revealed different types of surface morphology resulting from the different manufacturing processes. The first advancing mean contact angles of all implants ranged from 0 degrees (SLActive) to 138 degrees (OsseoSpeed), demonstrating statistically significant differences between implants. Because of kinetic hysteresis, initially hydrophobic implants became hydrophilic during following immersion loops. Conclusions: The tensiometric method was used to compare wettability of dental implants. A range from fully wettable/superhydrophilic to virtually unwettable/hydrophobic was observed on the implant surfaces examined. Int J Oral Maxillofac Implants 2011;26:1256–1266

Key words: dental implant, dynamic contact angle, hydrophilicity, surface topography, tensiometry, wettability

Full Text PDF File | Order Article


Get Adobe Reader
Adobe Acrobat Reader is required to view PDF files. This is a free program available from the Adobe web site.
Follow the download directions on the Adobe web site to get your copy of Adobe Acrobat Reader.


© 2017 Quintessence Publishing Co, Inc JOMI Home
Current Issue
Ahead of Print
Author Guidelines
Accepted Manuscripts
Submission Form
Quintessence Home
Terms of Use
Privacy Policy
About Us
Contact Us