LOGIN
 
Share Page:
Back

Volume 26 , Issue 6
November/December 2011

Pages 1161–1166


In Vivo Stability of Hydroxyapatite Nanoparticles Coated on Titanium Implant Surfaces

Ann Wennerberg, DDS, PhD/Ryo Jimbo, DDS, PhD/Stefan Allard, MSc, PhD/Gunnar Skarnemark, MSc, PhD/Martin Andersson, MSc, PhD


PMID: 22167419

Purpose: Nanotechnology has been employed in attempts to enhance bone incorporation of dental implants. Often, nanoparticles are applied to the implant surface as particle coatings. However, the same properties that may increase the functionality may also lead to undiscovered negative effects, such as instability of the nanocoating. The aim of this study was to investigate the stability/instability of the nanoparticles using a radiolabeling technique. Materials and Methods: Twenty threaded and turned titanium microimplants were inserted in 10 rats. All 20 implants were coated with nanometer-sized hydroxyapatite (HA) particles. In order to trace the HA nanoparticles, the particles for 16 implants were labeled with calcium 45 (45Ca). After 1, 2, 4, and 8 weeks, the implants and surrounding bone were retrieved and analyzed using autoradiography with respect to particle migration from the implant surface. Samples from the brain, liver, thymus, kidney, and blood, as well as wooden shavings from the rats’ cages, were also retrieved and analyzed using liquid scintillation counting. Results: The radioactivity representing the localization of 45Ca decreased over time from the vicinity of the implant. The amounts of 45Ca found in the blood and in the rats’ excretions decreased with time and corresponded well to each other. After 8 weeks, the only trace of 45Ca was found in the liver. Conclusion: The results indicated that released particles leave the body through the natural cleaning system, and the probability that the nanocoating will assemble in vital organs and thus become a potential biologic risk factor is unlikely. Int J Oral Maxillofac Implants 2011;26:1161–1166

Key words: implant, in vivo, nanocoat instability


Full Text PDF File | Order Article

 

 
Get Adobe Reader
Adobe Acrobat Reader is required to view PDF files. This is a free program available from the Adobe web site.
Follow the download directions on the Adobe web site to get your copy of Adobe Acrobat Reader.

 

© 2014 Quintessence Publishing Co, Inc JOMI Home
Current Issue
Ahead of Print
Archive
Author Guidelines
About
Accepted Manuscripts
Submission Form
Submit
Reprints
Permission
Advertising
Quintessence Home
Terms of Use
Privacy Policy
About Us
Contact Us
Help