Home Subscription Services
 
   

 
Oral Health and Preventive Dentistry
OHPD Home Page
About the Editor
Editorial Board
Submit
Author Guidelines
Submission Form
Reprints / Articles
Permissions
Advertising
MEDLINE Search
 
 
 
 
 
FacebookTwitter
Quintessence Publishing: Journals: OHPD

 

Oral Health & Preventive Dentistry

Edited by Prof. Dr. Jean-François Roulet, Prof. Dr. Dr. Niklaus P. Lang, Prof. Dr. Palle Holmstrup

Official journal of the Academy of Minimally Invasive Dentistry, the World Congress of Microdentistry, and the European Society of Preventive Dentistry

ISSN (print) 1602-1622 • ISSN (online) 1757-9996

Publication:

Spring 2014
Volume 12 , Issue 1



Pages: 45-53
DOI: 10.3290/j.ohpd.a31221
Back
Share Abstract:

Time-related Changes in pH, Buffering Capacity and Phosphate and Urea Concentration of Stimulated Saliva

Vuletic, Lea / Peros, Kristina / Spalj, Stjepan / Rogic, Dunja / Alajbeg, Ivan

Purpose: To quantify changes in pH, buffering capacity and hydrogen carbonate, phosphate, protein and urea concentrations of stimulated saliva which occur during a 30-min measurement delay after saliva collection. The correlation between time-related chemical changes and changes of salivary pH and buffering capacity was assessed in order to explain the observed changes in salivary pH and buffering capacity.
Materials and Methods: Stimulated saliva samples were collected from 30 volunteers after inducing salivation by chewing a piece of parafilm. Measurements of salivary variables were made immediately after saliva collection and again 30 min later, during which time the specimens were exposed to the atmosphere in collection cups at room temperature.
Results: Postponement of measurements resulted in a significant increase in pH and a significant decrease of buffering capacity, phosphate and urea concentration. The results suggest that the time-related pH increase could primarily be attributed to loss of dissolved carbon dioxide from saliva, and confirm the importance of hydrogen carbonate in the neutralisation of hydrogen ions, but they do not support the principle of catalysed phase-buffering for the hydrogen carbonate buffer system in saliva. A decrease in phosphate and urea concentration affects salivary buffering capacity.
Conclusion: This study emphasises the importance of the standardisation of measurement time when measuring salivary pH, buffering capacity, phosphate and urea concentrations following the collection of saliva in order to obtain comparable results. It also provides a partial explanation of the mechanisms underlying the observed changes of pH and buffering capacity over time.

Keywords: hydrogen carbonate, phosphate, salivary buffering capacity, salivary pH, urea

Full Text PDF File | Order Article

 

 
  © 2014 Quintessence Publishing Co Inc
 

Home | Subscription Services | Books | Journals | Multimedia | Events | Blog
Terms of Use | Privacy Policy | About Us | Contact Us | Advertising | Help | Sitemap | Catalog