Home Subscription Services
 
   

 
Journal of Oral & Facial Pain and Headache
OFPH Home Page
About the Editor
Editorial Board
Accepted Manuscripts
Submit
Author Guidelines
Submission Form
Reprints / Articles
Permissions
Advertising
MEDLINE Search
 
 
 
 
 
FacebookTwitter
Quintessence Publishing: Journals: OFPH
Journal of Oral & Facial Pain and Headache

Edited by Barry J. Sessle, BDS, MDS, BSc, PhD, FRSC

Official Journal of the American Academy of Orofacial Pain,
the European, Asian, and Ibero-Latin Academies of Craniomandibular
Disorders, and the Australian Academy of Orofacial Pain

ISSN 2333-0384 (print) • ISSN 2333-0376 (online)

Publication:
Spring 1994
Volume 8 , Issue 2

Back
Share Abstract:

Mandibular forces during simulated tooth clenching

Korioth/Hannam

Pages: 178-189
PMID: 7920353

Differential, functional loading of the mandibular condyles has been suggested by several human morphologic studies and by animal strain experiments. To describe articular loading and the simultaneous forces on the dental arch, static bites on a three-dimensional finite element model of the human mandible were simulated. Five clenching tasks were modeled: in the intercuspal position; during left lateral group effort; during left lateral group effort with balancing contact; during incisal clenching; and during right molar clenching. The model’s predictions confirmed that the human mandibular condyles are load-bearing, with greater force magnitudes being transmitted bilaterally during intercuspal and incisal clenching, as well as through the balancing-side articulation during unilateral biting. Differential condylar loading depended on the clenching task. Whereas higher forces were found on the lateral and lateroposterior regions of the condyles during intercuspal clenching, the model predicted higher loads on the medial condylar regions during incisal clenching. The inclusion of a balancing-side occlusal contact seemed to decrease the forces on the balancing-side condyle. Whereas the predicted occlusal reaction forces confirmed the lever action of the mandible, the simulated force gradients along the tooth row suggest a complex bending behavior of the jaw.

Full Text PDF File | Order Article

 

 
Get Adobe Reader
Adobe Acrobat Reader is required to view PDF files. This is a free program available from the Adobe web site.
Follow the download directions on the Adobe web site to get your copy of Adobe Acrobat Reader.
  © 2014 Quintessence Publishing Co Inc
 

Home | Subscription Services | Books | Journals | Multimedia | Events | Blog
Terms of Use | Privacy Policy | About Us | Contact Us | Advertising | Help | Sitemap | Catalog