Home Subscription Services

The International Journal of Oral & Maxillofacial Implants
OCTE Home Page
About the Editor
Editorial Board
Author Guidelines
Submission Form
Reprints / Articles
Quintessence Publishing: Journals: OCTE


Oral & Craniofacial Tissue Engineering

Edited by Ole T. Jensen, DDS, MS

Official Journal of the Tissue Engineering Society, the Chinese Society of Oral Biomedicine, and the Japanese Society of Regenerative Medicine

ISSN (print) 2158-3722 • ISSN (online) 2158-3706

Oral & Craniofacial Tissue Engineering
Fall 2011
Volume 1 , Issue 3

Share Abstract:

Effects of the Permeability of Shields with Autologous Bone Grafts on Bone Augmentation

Masayuki Ikeno, DDS/Hideharu Hibi, DDS, PhD/Kazuhiko Kinoshita, DDS, PhD/Hisashi Hattori, DDS, PhD/ Minoru Ueda, DDS, PhD

Pages: 198204

Purpose: The objective of this study was to histologically evaluate and compare the effects of the permeability of shields on bone augmentation in a rabbit calvarial model. Materials and Methods: Twelve adult male Japanese white rabbits were used for the study. Each received four titanium cylinders, which were placed into perforated slits made in the outer cortical bone of the calvaria and filled with autologous iliac bone. The tops of the cylinders were randomly covered with the following test materials: (1) uncovered (control), (2) a titanium mesh, (3) an expanded polytetrafluoroethylene (e-PTFE) membrane, or (4) a titanium plate. After 8 weeks, the animals were sacrificed, and ground sections were obtained for histomorphometric analysis. Results: There was no significant difference in augmented bone volume among all groups. However, the distribution of augmented bone in the cylinders differed among the groups. In the uncovered control, there was significantly less augmented bone in the upper third of the cylinder than in the middle or lower thirds. Findings were similar for the titanium mesh group and the e-PTFE membrane group, with significantly less augmented bone in the upper third than in the middle or lower thirds. In the titanium plate group, there was no significant difference in augmented bone among the upper, middle, and lower thirds. The differences among the upper, middle, and lower thirds of the cylinder were smaller in the order of titanium plate, e-PTFE membrane, titanium mesh, and uncovered control. Conclusion: The use of low-permeability shields resulted in small differences in the distribution of bone structure in the present bone augmentation model. Oral Craniofac Tissue Eng 2011;1:198204

Key words: bone augmentation, bone graft, expanded polytetrafluoroethylene membrane, iliac bone, titanium mesh

Full Text PDF File | Order Article


Get Adobe Reader
Adobe Acrobat Reader is required to view PDF files. This is a free program available from the Adobe web site.
Follow the download directions on the Adobe web site to get your copy of Adobe Acrobat Reader.
  © 2017 Quintessence Publishing Co Inc

Home | Subscription Services | Books | Journals | Multimedia | Events | Blog
Terms of Use | Privacy Policy | About Us | Contact Us | Advertising | Help | Sitemap | Catalog