Home Subscription Services
 
   

 
International Journal of Computerized
JCD Home Page
About the Editor
Editorial Board
Author Guidelines
Submission Form
Reprints / Articles
Permissions
Advertising
MEDLINE Search
Official Site
 
 
 
 
 
FacebookTwitterYouTube

Publication:
International Journal of Computerized Dentistry

Year 2005
Volume 8 , Issue 4

Back
Pages: 273 - 281

Milling precision and fitting accuracy of Cerec Scan milled restorations

Arnetzl G, Pongratz D.

The milling accuracy of the Cerec Scan system was examined under standard practice conditions. For this purpose, one and the same 3D design similar to an inlay was milled 30 times from Vita Mark II ceramic blocks. Cylindrical diamond burs with 1.2 or 1.6 mm diameter were used. Each individual milled body was measured exactly to 0.1 microm at five defined sections with a coordinate measuring instrument from the Zeiss company. In the statistical evaluation, both the different diamond bur diameters and the extent of material removal from the ceramic blank were taken into consideration; sections with large substance removal and sections with low substance removal were defined. The standard deviation for the 1.6-mm burs was clearly greater than that for the 1.2-mm burs for the section with large substance removal. This difference was significant according to the Levene test for variance equality. In sections with low substance removal, no difference between the use of the 1.6-mm or 1.2-mm bur was shown. The measuring results ranged between 0.053 and 0.14 mm. The spacing of the distances with large substance removal were larger than those with low substance removal. The T-test for paired random samples showed that the distance with large substance removal when using the 1.6-mm bur was significantly larger than the distance with low substance removal. The difference was not significant for the small burs. It was shown several times statistically that the use of the cylindrical diamond bur with 1.6-mm diameter led to greater inaccuracies than the use of the 1.2-mm cylindrical diamond bur, especially at sites with large material removal.

 

  © 2014 Quintessence Publishing Co Inc
 

Home | Subscription Services | Books | Journals | Multimedia | Events | Blog
Terms of Use | Privacy Policy | About Us | Contact Us | Advertising | Help | Sitemap | Catalog