Home Subscription Services
 
   

 
International Journal of Computerized
JCD Home Page
Editorial Board
Author Guidelines
Submission Form
Reprints / Articles
Permissions
Advertising
MEDLINE Search
Official Site
 
 
 
 
 
FacebookTwitter
Quintessence Publishing: Journals: JCD

 

International Journal of Computerized Dentistry

Edited by Prof. Dr. Albert Mehl, and Dr. Olaf Schenk

Official publication of the International Society of Computerized Dentistry

ISSN 1463-4201

Publication:

Summer 2018
Volume 21 , Issue 2

Back
Share Abstract:

In vitro comparison of guided versus freehand implant placement: use of a new combined TRIOS surface scanning, Implant Studio, CBCT, and stereolithographic virtually planned and guided technique

P. L. B. Tan, D. M. Layton, S. L. Wise

Pages: 8795

Implant placement requires precise planning and execution to avoid collision with critical anatomical structures. Technology advances may improve placement outcomes. The purpose of this study was to trial and measure in an in vitro environment the accuracy of placing a single dental implant in the planned position using a specific guided surgery technique compared with a freehand surgery technique. The dental model of a patient missing tooth 16 was printed 30 times (EnvisionTEC 3Dent). Each print was scanned (TRIOS color scanner) to create a 3D surface model, and radiographed (Gendex CB-500) to create cone beam computed tomography (CBCT) data. The surface data and CBCT data were merged (Implant Studio software), and a Straumann RC bone level 4.1 × 8 mm implant placement was planned. A surgical guide was printed (Stratasys OrthoDesk) for each case (n = 30). Simulated cases were assigned to Group A (guided) or Group B (freehand, where the fabricated guide was discarded). Implants were placed, and the models rescanned (TRIOS). The new data was superimposed on the original data, and the surgical implant location compared with the planned position for each model (Convince software) by a researcher blinded to group allocation. Differences in angulation (degrees); shoulder, apex, and depth displacements (mm); and direction of displacement were assessed with Mann-Whitney U and Fisher exact tests. Data was expressed as medians bounded by interquartile ranges (IQRs). Implant angulation and apical displacement were significantly closer to the planned position in the guided group compared with the freehand group (3.91 degrees: IQR 2.45 to 5.38 degrees vs 8.82 degrees: IQR 4.84 to 9.84 degrees, P = 0.005; and 0.87 mm: IQR 0.53 to 1.11 mm vs 1.48 mm: IQR 1.14 to 1.72 mm, P < 0.001, respectively). Implant shoulder displacement, depth displacements, and direction of displacement did not differ between the groups. Within the in vitro environment, merged 3D surface scan data and 3D CBCT scan data can be used to plan and guide implant placement with greater accuracy than with the freehand technique.

Full Text PDF File | Order Article

 

 
  © 2018 Quintessence Publishing Co Inc
 

Home | Subscription Services | Books | Journals | Multimedia | Events | Blog
Terms of Use | Privacy Policy | About Us | Contact Us | Advertising | Help | Sitemap | Catalog

 

bedava bahis bedava bahis oyna