Home Subscription Services

The Journal of Adhesive Dentistry
JAD Home Page
About the Editor
Editorial Board
Author Guidelines
Submission Form
Reprints / Articles
Quintessence Publishing: Journals: JAD


The Journal of Adhesive Dentistry

Edited by Prof. Dr. Roland Frankenberger, Prof. Bart Van Meerbeek

ISSN (print) 1461-5185 • ISSN (online) 1757-9988


Fall 2004
Volume 6 , Issue 3

Pages: 175-182
Share Abstract:

Effect of Sodium Hypochlorite Treatment on the Molecular Composition and Morphology of Human Coronal Dentin

Mountouris, George/Silikas, Nick/Eliades, George

The aim of the present study was to evaluate the deproteination potential of 5% aqueous NaOCl solution applied by rubbing action on the molecular composition and morphology of smear-layer covered and acid-etched human coronal dentin surfaces. Paired specimens (n = 4 x 2 per group) of acid-etched (Group A) and smear-layer covered (Group B) human coronal dentin surfaces were sequentially treated with the NaOCl solution for time intervals ranging from 5 s to 120 s and analyzed by reflectance FTIR microspectroscopy and tapping mode atomic force microscopy. The changes in the mineral (v4 P-O stretching vibrations) to matrix (C = O stretching vibrations of amide I) peak area ratios and in the Ra roughness parameter were used to quantify the effect of treatment. Two-way ANOVA and Dunn’s tests were used to assess the differences within each group and between groups (a = 0.05). In both groups, NaOCl treatment reduced organic matrix (amide I, II, III peaks), but did not affect carbonates and phosphates. In group A, the rate of deproteination was slow, and reached a peak value after 120 s. Tubule orifices became visible after 40 s of treatment; after 120 s, excessive porosity was detected, with Ra values presenting no statistically significant difference from group B. In group B after 10 s, the extent of deproteination was enhanced, reaching a plateau between 30 s and 60 s, and attaining a maximum after 120 s. Tubule diameter, intertubular porosity, and Ra were increased; intertubular dentin area was reduced. For both groups after 40 s of treatment, the mineral to matrix ratio recorded was similar to smear-layer-free sectioned dentin. The results of the present study imply that deproteination of mineralized or acid-etched dentin surfaces within a clinically relevant time frame may provide methods for bonding to dentin alternative to conventional technique-sensitive dentin hybridization.

Keywords: dentin, sodium hypochlorite, FTIR, AFM, deproteination

Full Text PDF File | Order Article


  © 2017 Quintessence Publishing Co Inc

Home | Subscription Services | Books | Journals | Multimedia | Events | Blog
Terms of Use | Privacy Policy | About Us | Contact Us | Advertising | Help | Sitemap | Catalog