Home Subscription Services
 
   

 
The Journal of Adhesive Dentistry
JAD Home Page
About the Editor
Editorial Board
Submit
Author Guidelines
Submission Form
Reprints / Articles
Permissions
Advertising
MEDLINE Search
Official Web Site
 
 
 
 
 
FacebookTwitter
Quintessence Publishing: Journals: JAD

 

The Journal of Adhesive Dentistry

Edited by Prof. Dr. Roland Frankenberger, Prof. Bart Van Meerbeek

ISSN (print) 1461-5185 • ISSN (online) 1757-9988

Publication:

July/August 2016
Volume 18 , Issue 4



Pages: 325–330
PMID: 27419241
DOI: 10.3290/j.jad.a36512
Back
Share Abstract:

Effect of Different Concentrations of Chlorhexidine in Glass-ionomer Cements on In Vivo Biocompatibility

Rogério Lacerda-Santos / Gêisa Aiane de Morais Sampaio / Mirella de Fátima Liberato de Moura / Fabiola Galbiatti de Carvalho / Antonielson dos Santos / Matheus Melo Pithon / Polliana Muniz Alves

Purpose: To examine whether a difference exists between the in vivo biocompatibility of glass-ionomer cements (GICs) containing chlorhexidine (CHX) in different concentrations.

Materials and Methods: Eighty-four male Wistar rats were distributed into 7 groups (n = 12) and received subcutaneous implants of small tubes containing different materials, as follows: Ketac control (K), Ketac-CHX 10% (K10), Ketac-CHX 18% (K18), Resilience control (R), Resilience-CHX 10% (R10), Resilience-CHX 18% (R18), Control (polyethylene). The animals were then sacrificed on post-insertion days 7, 15 and 30, and tissues were examined under an optical microscope for inflammatory infiltrate, edema, necrosis, granulation tissue, multinucleated giant cells, and collagen fibers. The results were statistically analyzed using Kruskal-Wallis and Dunn’s tests (p < 0.05).

Results: Groups K18 and R18 showed larger areas of intense inflammatory infiltrate, with significant differences between group C and groups K18 and R18 (p = 0.007) at 7 days, and between groups C and K18 (p = 0.017) at 15 days. In terms of tissue repair, groups K18 and R18 demonstrated a lower quantity of collagen fibers with significant differences from group C (p = 0.019) at 7 days, and between group K18 and group C (p = 0.021) at 15 days.

Conclusion: The 18% concentration of CHX was shown to have a toxic effect. The 10% concentration of CHX was shown to be suitable for tissue contact. The addition of CHX to the glass-ionomer cements is a highly promising method for obtaining of an antibacterial GIC for use in clinical practice.

Full Text PDF File | Order Article

 

 

  © 2019 Quintessence Publishing Co Inc
 

Home | Subscription Services | Books | Journals | Multimedia | Events | Blog
Terms of Use | Privacy Policy | About Us | Contact Us | Advertising | Help | Sitemap | Catalog