Home Subscription Services
 
   

 
The Journal of Adhesive Dentistry
JAD Home Page
About the Editor
Editorial Board
Submit
Author Guidelines
Submission Form
Reprints / Articles
Permissions
Advertising
Advertising
MEDLINE Search
 
 
 
 
 
FacebookTwitter
Quintessence Publishing: Journals: JAD

 

The Journal of Adhesive Dentistry

Edited by Jean-François Roulet

ISSN (print) 1461-5185 • ISSN (online) 1757-9988

Publication:

May/June 2013
Volume 15 , Issue 3



Pages: 251-258
PMID: 23534030
DOI: 10.3290/j.jad.a29014
Back
Share Abstract:

Effect of Artificial Aging on the Bond Durability of Fissure Sealants

Yun, Xiaofei / Li, Wei / Ling, Chen / Fok, Alex

Purpose: To evaluate the effect of artificial aging on the bond durability of fissure sealants in vitro.

Materials and Methods: Twenty bovine incisors received 4 different sealant treatments and were divided into four groups: 1. Ultraseal XT plus (UX); 2. Enamel Loc (EL); 3. 35% phosphoric acid plus Enamel Loc (PEL); 4. Adper Prompt L-Pop plus Clinpro (PPC). Beam-shaped specimens were prepared and randomly divided into three subgroups. One subgroup underwent the microtensile bond strength (µTBS) test after 24-h storage in 37°C water. The other two subgroups were also subjected to the microtensile bond strength test after 5000 and 10,000 thermal cycles, respectively. Another twelve intact human third molars were sealed using 1 of 3 methods and were divided into 3 groups of 4 each: 1. Ultraseal XT plus; 2. Adper Prompt L-Pop plus Clinpro; and 3. Enamel Loc. Two specimens from each group were immersed in a 50% silver nitrate solution for 24 h, followed by exposure to fluorescent light for 8 h, before being scanned in a micro-CT (microcomputer tomography) machine. The other two were handled in the same way after undergoing 10,000 thermal cycles. The CT images obtained were evaluated.

Results: All samples from the EL group were broken during preparation, so no µTBS results were available. After 5000 thermal cycles, the bond strengths of the three other groups (UX, PEL, PPC) decreased significantly (p < 0.05). Longer thermocycling (10,000 cycles) resulted in more decreases in µTBS for group PEL and PPC, while the strength of the UX group remained relatively unchanged. After thermocycling, considerable silver penetration could be seen at the sealant/enamel interface of the EL group in micro-CT images.

Conclusions: The etch-and-rinse procedure for sealant application promotes higher bond strength under artificial aging. Micro-CT, a nondestructive analytical tool, may be used to evaluate the sealant/enamel interface effectively.

Keywords: microtensile, micro-CT, microleakage, nondestructive, sealant/enamel interface

Full Text PDF File | Order Article

 

 
  © 2014 Quintessence Publishing Co Inc
 

Home | Subscription Services | Books | Journals | Multimedia | Events | Blog
Terms of Use | Privacy Policy | About Us | Contact Us | Advertising | Help | Sitemap | Catalog